• Title/Summary/Keyword: Cascade Model

Search Result 254, Processing Time 0.032 seconds

Model Matching for Composite Asynchronous Sequential Machines in Cascade Connection (직렬 결합된 복합 비동기 순차 머신을 위한 모델 정합)

  • Yang, Jung-Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.253-261
    • /
    • 2013
  • In this paper, we study the problem of controlling composite asynchronous sequential machines. The considered asynchronous machine consists of two input/state machines in cascade connection, where the output of the front machine is delivered to the input channel of the rear machine. The objective is to design a corrective controller realizing model matching such that the stable state behavior of the closed-loop system matches that of a reference model. Since the controller receives the state feedback of the rear machine only, there exists uncertainty about the present state of the front machine. We specify the existence condition for a corrective controller given the uncertainty. The design procedure for the proposed controller is described in a case study.

Numerical Analysis on the Turbulent Flow of Compressor Cascades at High Incidence Angle

  • Jeong, Soo-in;Jeong, Gi-ho;Kim, Kui-soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.825-830
    • /
    • 2004
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Navier-Stokes equations has been carried out for double-circular-arc (DCA) compressor cascades. Two types of double-circular-arc cascades were used in this analysis. The appropriate turbulence model for compressor analysis was selected among the conventional turbulence models such as Baldwin-Lomax, k-$\varepsilon$ and k-$\varepsilon$ models. The results of current study were compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE/PWIM algorithm for collocated grid and hybrid scheme for the convective terms were the main features of numerical tools. As commonly known, turbulence modeling is very important for the prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. For selection of turbulence model, 2-D analysis was performed. And then, k-$\varepsilon$ turbulence model with wall function chosen as the reasonable turbulence model for 3-D calculation was used to increase the efficiency of computation times. A reasonable result of 3-D flow pattern passing through the double-circular-arc cascade was obtained.

  • PDF

A Study of Design of Sidewalls for Cascade Model with Single Blade Within a 160% Pitch Passage (160% 피치의 유로에서 단일익형에 의한 캐스케이드 실험을 위한 벽면의 설계에 관한 연구)

  • Cho, Chong-Hyun;Kim, Young-Cheol;Ahn, Kook-Young;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.527-536
    • /
    • 2009
  • A cascade apparatus was designed with only one blade. Its passage is a 160% width of the cascade pitch. This kind of apparatus can give more accurate experimental result than those applying multi-blades even though the apparatus is small. However, this causes difficulties to make the periodic condition along the pitchwise direction. In this study, sidewalls were designed to satisfy the periodic condition based on the flow structure using a gradient based optimization and a genetic algorism. The objective function was adopted the surface Mach number obtained on the cascade and fourteen design variables were selected for controlling sidewall shapes. The designed sidewalls using the genetic algorism shows better result.

The Current-Position Cascade PID Control of Delta-type Parallel Robot (델타 로봇의 전류-위치 Cascade PID 제어)

  • Paek, Dong-Hee;Kim, Yeong-Dae;Cho, Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.273-284
    • /
    • 2020
  • This paper proposes a method of designing and controlling delta robots with low-cost DC motors, which are widely used in the automation process. Simulation was performed by interpreting the mechanics and dynamics of the delta robot, and based on this analysis, low-cost DC motor was selected. Experiments were conducted to obtain characteristic values of motors and the current-position cascade control system was designed and implemented. In order to verify the feasibility of the proposed system, the experiment to check that the end-effector of the delta robot follows the target path was progressed. Through the experiment, the limitations of using low-cost motors were overcome by designing compensation algorithms and the performance of the position control was verified.

Cascade-Correlation Network를 이용한 종합주가지수 예측

  • 지원철;박시우;신현정;신홍섭
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.745-748
    • /
    • 1996
  • Korea Composite Stock Price Index (KOSPI) was predicted using Cascade Correlation Network (CCN) model. CCN was suggested, by Fahlman and Lebiere [1990], to overcome the limitations of backpropagation algorithm such as step size problem and moving target problem. To test the applicability of CCN as a function approximator to the stock price movements, CCN was used as a tool for univariate time series analysis. The fitting and forecasting performance fo CCN on the KOSPI was compared with those of Multi-Layer Perceptron (MLP).

  • PDF

Introduction to Coagulation System (혈액응고 기전에 대한 고찰)

  • Lyu, Chuhl-Joo
    • Neonatal Medicine
    • /
    • v.18 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Coagulation involves the regulated sequence of proteolytic activation of a series of proteins to achieve appropriate and timely hemostasis in an injured vessel. In the non-pathological state, the inciting event involves exposure of circulating factor VIIa to extravascularly expressed tissue factor, which brings into motion the series of steps which results in cell based model of coagulation. In the new concepts of coagulation system, initiation, amplification and propagation steps are involved to converse of fibrinogen to fibrin. The precisely synchronized cascade of events is counter-balanced by a system of anticoagulant mechanisms. Developmental hemostasis refers to the age-related changes in the coagulation system that are most marked during neonate and childhood. An understanding of these changes in crucial to the accurate diagnosis of hemostatic abnormalities in neonate and children. This review aims to elucidate the main events within the coagulation cascade as it is currently understood to operate in vivo, and also a short review of the anticoagulants as they relate to this model. Also this paper describes the common pitfalls observed in the clinical data related to the coagulation system in neonate to children.

A Study on the Vehicle Dynamics and Road Slope Estimation (차량동특성 및 도로경사도 추정에 관한 연구)

  • Kim, Moon-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.575-582
    • /
    • 2019
  • Advanced driving assist system can support safety of driver and passengers which may require vehicle dynamics states as well as road geometry. It is essential to have in real-time estimation of related variables and parameters. Among the road geometry parameters, road slope angle which can not be measured is essential parameter in pose estimation, adaptive cruise control and others on sag road. In this paper, Kalman filter based method for the estimation of the vehicle dynamics and road slope angle using a nonlinear vehicle model is proposed. It uses a combination of Kalman filter as Cascade Extended Kalman Filter. CEKF uses measured vehicle states such as yaw rate, longitudinal/lateral acceleration and velocity. Unknown vehicle parameters such as center of gravity and inertia are obtained by 2 D.O.F lateral model and experimentally. Simulation and Experimental tests conducted with commercialized vehicle dynamics model and real-car.

High frequency measurement and characterization of ACF flip chip interconnects

  • 권운성;임명진;백경욱
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.11a
    • /
    • pp.146-150
    • /
    • 2001
  • Microwave model and high-frequency measurement of the ACF flip-chip interconnection was investigated using a microwave network analysis. S-parameters of on-chip and substrate were separately measured in the frequency range of 200 MHz to 20 GHz using a microwave network analyzer HP8510 and cascade probe. And the cascade transmission matrix conversion was performed. The same measurements and conversion techniques were conducted on the assembled test chip and substrate at the same frequency range. Then impedance values in ACF flip-chip interconnection were extracted from cascade transmission matrix. ACF flip chip interconnection has only below 0.1nH, and very stable up to 13 GHz. Over the 13 GHz, there was significant loss because of epoxy capacitance of ACF. However, the addition of SiO$_2$filler to the ACF lowered the dielectric constant of the ACF materials resulting in an increase of resonance frequency up to 15 GHz. High frequency behavior of metal Au stud bumps was investigated. The resonance frequency of the metal stud bump interconnects is higher than that of ACF flip-chip interconnects and is not observed at the microwave frequency band. The extracted model parameters of adhesive flip chip interconnects were analyzed with the considerations of the characteristics of material and the design guideline of ACA flip chip for high frequency applications was provided.

  • PDF

Compressor Cascade Flow Analysis by Using Upwind Flux Difference Splitting Method (풍상차분법을 이용한 압축기 익렬유동 해석)

  • 권창오;송동주;강신형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.653-661
    • /
    • 1994
  • In this paper the CSCM type upwind flux difference splitting Navier-Stokes method has been applied to study the ARL-SL19 supersonic/transonic compressor cascade flow. H-type grid was chosen for its simplicity in applying cyclic tridiagonal matrix algorithm along with conventional slip/no-slip boundary conditions. The thin-layer algebraic model of Baldwin-Lomax was employed for the calculation of turbulent flows. The test case inlet Mach No. was 1.612 and inlet/exit pressure ratio($P_2/P_1$) was 2.15. The results were compared with experimental results from current method were compared well in suction surface with the experiments and other computational results; however, not well in pressure surface. It might be due to the complex flowfields such as shock/boundary layer interaction, turbulence, and flow separation, etc. In the future, a proper turbulence modelling and adaptive grid system will be studied to improve the solution quality.

A New Scheme for Maintaining Balanced DC Voltages in Static Var Compensator(SVC) Using Cascade Multilevel Inverter

  • Min, Wan-Ki;Min, Joon-Ki;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.561-565
    • /
    • 2001
  • This paper proposes a new switching scheme of a static var compensator(SVC) with cascade multilevel inverter which employs H-bridge inverter(HBI). To improve the un­balanced problem of the DC capacitor voltages, the rotated switching scheme of fundamental frequency is newly used. The optimized fundamental switching pattern with low switching frequency is adapted to be suitable for high application. The selective harmonic elimination method(SHEM) allows to keep the total harmonic distortion(THD) low in the output voltage of multilevel inverter. The SVC system is modeled using the d-q transform which calculates the instantaneous reactive power. This model is used to design a controller and analyze the SVC system. Simulated and experimental results are also presented and discussed to validate the proposed schemes.

  • PDF