• Title/Summary/Keyword: Cascade Flow

Search Result 270, Processing Time 0.022 seconds

Performance Evaluation of Stator-Rotor Cascade System Considering Flow Viscosity and Aeroelastic Deformation Effects (유동점성 및 공탄성 변형효과를 고려한 스테이터-로터 케스케이드 시스템의 성능평가)

  • Kim, Dong-Hyun;Kim, Yu-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.1
    • /
    • pp.72-78
    • /
    • 2008
  • In this study, advanced (fluid-structure interaction (FSI)) analysis system has been developed in order to predict turbine cascade performance with blade deformation effect due to aerodynamic loads. Intereference effects due to the relative movement of the rotor cascade with respect to the stator cascade are also considered. Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation k-ω SST turbulence models are solved to accurately predict fluid dynamic loads considering flow separation effects. A fully implicit time marching scheme based on the (coupled Newmark time-integration method) with high artificial damping is efficiently used to compute the complex fluid-structure interaction problem. Predicted aerodynamic performance considering structural deformation effect of the blade shows somewhat different results compared to the case of rigid blade model. Cascade performance evaluations for different elastic axis positions are importantly presented and its aeroelastic effects are investigated.

Numerical Analysis on Cascade Performance of Double-Circular-Arc Hydrofoil (수치 모사를 통한 이중원호 익렬의 성능 예측)

  • Jeong, Myeong-Gyun;O, Jae-Min;Paeng, Gi-Seok;Song, Jae-Uk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.432-438
    • /
    • 2002
  • In order to design and analyze the performance of an axial-flow pump it is necessary to know the flow deviation, deflection angle and pressure loss coefficient as a function of the angle of incidence for the hydrofoil section in use. Because such functions are unique to the particular section, however, general correlation formulae are not available for the multitude of hydrofoil profiles, and such functions must be generated by either experiment or numerical simulation for the given or selected hydrofoil section. The purpose of present study is to generate design correlations for hydrofoils with double circular arc (DCA) camber by numerical analysis using a commercial code, FLUENT. The cascade configuration is determined by a combination of the inlet blade angle, blade thickness, camber angle, and cascade solidity, and a total of 90 cascade configurations are analyzed in this study. The inlet Reynolds number based on the chord and the inlet absolute velocity is fixed at 5${\times}$10$\^$5/. Design correlations are formulated, based on the data at the incidence angle of minimum total pressure loss. The correlations obtained in this way show good agreement with the experiment data collected at NASA with DCA hydrofoils.

Numerical Analysis on Effects of the Contoured Endwall on the Three-dimensional Flow Characteristics in a Turbine (끝벽의 형상이 터빈 캐스케이드내 3차원 유동특성에 미치는 영향에 관한 전산해석)

  • Kim, Dae-yu;Chung, Tin-Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.284-289
    • /
    • 2002
  • The objective of this study is to document the secondary flow and the total pressure loss distribution in the contoured endwall installed linear turbine cascade passage and to propose an appropriate height of the contoured endwall which shows the best loss reduction among the simulated contoured endwall. In this study, three different contoured endwalls have been tested which have different height. This study was performed by numerical method and the result showed the contoured endwall which has the height of $5\%$ of the axial chord showed the best loss reduction rate.

  • PDF

Aerodynamic Design of the Axial Fan (축류 송퐁기의 공력학적 설계)

  • Sohn, Sang-Bum;Joo, Won-Gu;Cho, Kang-Rae;Nam, Hyung-Baik;Yoon, In-Kyu;Nam, Leem-Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.64-69
    • /
    • 1998
  • In this study, a preliminary design method of the axial fan was systematically established based on the two-dimensional cascade theory. Flow deviation, lift coefficient, distribution of velocity and pressure coefficient on blade surfaces were predicted by an inviscid theory of Martensen method, which was also applied to select an airfoil of required performance in the present design process. The aerodynamic performance of designed blades can be predicted quickly and reasonably by using the through-flow calculation method in the preliminary design process. It would be recommendable to adopt three-dimensional viscous flow calculation at the final design refinement stage.

  • PDF

EFFECTS OF COMPUTATIONAL GRIDS ON NUMERICAL SIMULATION OF TRANSONIC TURBINE CASCADE FLOWFIELDS (천음속 터빈 익렬유동의 수치해석에서의 계산격자점 영향)

  • Chung H.T.;Jung H.N.
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.15-20
    • /
    • 2005
  • Numerical investigations have been performed to examine the effects of the computational grids on the prediction of the flow characteristics inside the turbine cascades. Three kinds of grid system based on H-type grid are applied to the high-turning transonic turbine rotor blades and comparisons with the experimental data and the numerical results of each grid structure have been done. In addition, the grid sensitivity on the estimation of the blade performances has been investigated.

Effects of Computational Grids on Numerical Simulation of Transonic Turbine Cascade Flowfields (천음속 터빈 익렬유동의 수치해석에서의 계산격자점 영향)

  • Chung, H.T.;Jung, H.N.;Seo, Y.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.857-862
    • /
    • 2003
  • Numerical investigations have been performed to examine the effects of the computational grids on the prediction of the flow characteristics inside the turbine cascades. Three kinds of grid system based on H-type grid are applied to the high-turning transonic turbine rotor blades and comparisons with the experimental data and the numerical results of each grid structure have been done. In addition, the grid sensitivity on the estimation of the blade performances has been investigated.

  • PDF

A Study on The Performance of Supersonic Cascade with The Nozzle Inlet Boundary

  • Shin, Bong-Gun;Jeong, Soo-In;Kim, Kui-Soon;Lee, Eun-seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.839-847
    • /
    • 2004
  • In this study, the flow characteristics within supersonic cascades are numerically investigated by using Fine Turbo, a commercial CFD code. Cascade flows are computed for three different inlet conditions. : a uniform supersonic inlet condition, a linear nozzle and a converging-diverging nozzle located in front of cascades. The effect of inlet conditions is compared and flow characteristics including shock patterns and shock-boundary layer interaction are analyzed. Also the effect of design parameters such as pitch-chord ratio, blade angle and blade surface curvature on the flow within supersonic cascades are studied.

  • PDF

Distribution of the Reynolds Stress Tensor inside Tip Leakage Vortex (익단 누설 와류내의 레이놀즈 응력 분포)

  • Lee, Gong-Hee;Park, Jong-Il;Baek, Je-Hyun
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.496-501
    • /
    • 2003
  • Reynolds averaged Wavier-Stokes simulations based on the Reynolds stress model was performed to investigated the effect of inlet flow angle on the distributions of the Reynolds stress tensor inside tip leakage vortex of a linear compressor cascade. Two different inlet flow angles ${\beta}=29.3^{\circ}$(design condition) and $36.5^{\circ}$(off-design condition) were considered. Stress tensor analysis, which transforms the Reynolds stress into the principal direction, was applied to show an anisotropy of the normal stresses. Whereas the anisotropy was highest in the region where the tip leakage vortex collides the suction side of the blade and tip leakage flow enters between blade tip of the pressure side and the endwall, it had the lowest value at the center of tip leakage vortex. It was also found that the magnitude of maximum shear stress at design condition was greater than that of off-design condition.

  • PDF

A Study of Design of Sidewalls for Cascade Model with Single Blade Within a 160% Pitch Passage (160% 피치의 유로에서 단일익형에 의한 캐스케이드 실험을 위한 벽면의 설계에 관한 연구)

  • Cho, Chong-Hyun;Kim, Young-Cheol;Ahn, Kook-Young;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.527-536
    • /
    • 2009
  • A cascade apparatus was designed with only one blade. Its passage is a 160% width of the cascade pitch. This kind of apparatus can give more accurate experimental result than those applying multi-blades even though the apparatus is small. However, this causes difficulties to make the periodic condition along the pitchwise direction. In this study, sidewalls were designed to satisfy the periodic condition based on the flow structure using a gradient based optimization and a genetic algorism. The objective function was adopted the surface Mach number obtained on the cascade and fourteen design variables were selected for controlling sidewall shapes. The designed sidewalls using the genetic algorism shows better result.