• 제목/요약/키워드: Cartilage properties

검색결과 42건 처리시간 0.024초

개 관절 윤활액 유래 중간엽 줄기세포의 특성과 분화능 분석 (Characterization and Differentiation of Synovial Fluid Derived Mesenchymal Stem Cells from Dog)

  • 이정현;이성림
    • 한국수정란이식학회지
    • /
    • 제27권3호
    • /
    • pp.175-181
    • /
    • 2012
  • The synovial tissues are a valuable MSCs source for cartilage tissue engineering because these cells are easily obtainable by the intra-articular biopsy during diagnosis. In this study, we isolated and characterized the canine MSCs derived from synovial fluid of female and male donors. Synovial fluid was flushed with saline solution from pre and post-puberty male (cM1-sMSC and cM2-sMSC) and female (cF1-sMSC and cF2-sMSC) dogs, and cells were isolated and cultured in advanced-DMEM (A-DMEM) supplemented with 10% FBS in a humidified 5% $CO_2$ atmosphere at $38.5^{\circ}C$. The cells were evaluated for the expression of the early transcriptional factors, such as Oct3/4, Nanog and Sox2 by RT-PCR. The cells were induced under conditions conductive for adipogenic, osteogenic, and chondrogenic lineages, then evaluated by specific staining (Oil red O, von Kossa, and Alcian Blue staining, respectively) and analyzed for lineage specific markers by RT-PCR. All cell types were positive for alkaline phosphatase (AP) activity and early transcriptional factors (Oct3/4 and Sox2) were also positively detected. However, Nanog were not positively detected in all cells. Further, these MSCs were observed to differentiate into mesenchymal lineages, such as adipocytes (Oil red O staining), osteocytes (von Kossa staining), and chondrocytes (Alcian Blue staining) by cell specific staining. Lineage-specific genes (osteocyte; osteonectin and Runx2, adipocytes; PRAR-${\gamma}2$, FABP and LEP, and chondrocytes; collagen type-2 and Sox9) were also detected in all cells. In this study, we successfully established synovial fluid derived mesenchymal stem cells from female and male dogs, and determined their basic biological properties and differentiation ability. These results suggested that synovial fluid is a valuable stem cell source for cartilage regeneration therapy, and it is easily accessible from osteoarthritic knee.

영구치 치수 기질세포를 이용한 연골 분화 및 분화 시기에 따른 형태학적 변화 (Morphological evaluation during in vitro chondrogenesis of dental pulp stromal cells)

  • 정주령;김하나;박열;김민정;오영주;신수정;최윤정;김경호
    • Restorative Dentistry and Endodontics
    • /
    • 제37권1호
    • /
    • pp.34-40
    • /
    • 2012
  • Objectives: The aim was to confirm the stem cell-like properties of the dental pulp stromal cells and to evaluate the morphologic changes during in vitro chondrogenesis. Materials and Methods: Stromal cells were outgrown from the dental pulp tissue of the premolars. Surface markers were investigated and cell proliferation rate was compared to other mesenchymal stem cells. Multipotency of the pulp cells was confirmed by inducing osteogenesis, adipogenesis and chondrogenesis. The morphologic changes in the chondrogenic pellet during the 21 day of induction were evaluated under light microscope and transmission electron microscope. TUNEL assay was used to evaluate apoptosis within the chondrogenic pellets. Results: Pulp cells were CD90, 105 positive and CD31, 34 negative. They showed similar proliferation rate to other stem cells. Pulp cells differentiated to osteogenic, adipogenic and chondrogenic tissues. During chondrogenesis, 3-dimensional pellet was created with multi-layers, hypertrophic chondrocyte-like cells and cartilage-like extracellular matrix. However, cell morphology became irregular and apoptotic cells were increased after 7 day of chondrogenic induction. Conclusions: Pulp cells indicated mesenchymal stem cell-like characteristics. During the in vitro chondrogenesis, cellular activity was superior during the earlier phase (within 7 day) of differentiation.

악관절원판의 인위적 전방변위술시행후 악관절구성조직에서 Fibronectin의 분포변화 (DISTRIBUTION IN FIBRONECTIN OF THE RABBIT TEMPOROMANDIBULAR JOINT TISSUES FOLLOWING SURGICAL INDUCTION OF ANTERIOR DISK DISPLACEMENT : IMMUNOHISTOCHEMICAL STUDY)

  • 김욱규;정인교;박봉수
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제25권4호
    • /
    • pp.337-349
    • /
    • 1999
  • The extracellular matrix(ECM) is a complex network of different combination of collagens, glycosaminoglycans, laminin, fibronectin, and many other glycoproteins including proteolytic enzymes. The composition and organization of the ECM contributes to the uniques physical or biomechanical properties of a tissue. Fibronectins(FN) are dimeric glycoproteins located on cell surfaces, in the matrix of connective tissue, and in blood. Fibronectins mediate cell attachment to collagen substratum and have been implicated in a variety of important biological processes, including embryogenesis and cell differentiation. The purpose of this study was to determine the effects of surgical induction of anterior disk displacement(ADD) on distribution of fibronectin in the rabbit temporomandibular joint(TMJ) tissues included the articular cartilage, disc, retrodiscal tissue, articular eminence using an immunohistochemical technique. The left TMJ was exposed surgically, and all discal attachments were severed except for the posterior attachment. The disk was then repositioned anteriorly and sutured to the zygomatic arch. The right TMJ served as a shamoperated control. Normal joints were used as a nonoperated control. Fourty-five rabbits were used for experiments in total. For fibronectin immunohistochemical study, eighteen rabbits (one normal group and 5 experimental groups, each group consists of 3 rabbits) were used. The experimental rabbits were sacrified after operation period of 2, 3, 4, 6 and 8 weeks on fibronectin. The obtained results were as follows ; 1. Fibronectin immunoreaction on all TMJ tissues(mandibular condyle, articular disc, retrodiscal tissue, articular eminence) in the normal rabbit was observed. Especially the reverse cell layer and proliferation zone of articular cartilage of condyle show strong positive reaction. 2. Depletion of fibronectin in the all TMJ tissues except hypertrophic zone of articular cartilage occurred at 2 weeks following induction of ADD. 3. The restoration of immunoreaction at 4 weeks was observed and a progressive increasing reaction at 6 weeks, 8 weeks also was found. Our study generally showed degenerative changes in TMJ tissues after ADD although TMJ tissues adapted or degenerated to abnormal loads and stress distribution according to the remodeling capacity of TMJ tissues.

  • PDF

Allogeneic Transplantation of Mesenchymal Stem Cells from Human Umbilical Cord Blood

  • Lee, Jae-Kwon
    • Journal of Applied Biological Chemistry
    • /
    • 제50권4호
    • /
    • pp.187-195
    • /
    • 2007
  • The cord blood serves as a vehicle for the transportation of oxygen and nutrients to the fetus. In the past, the human cord blood has generally been discarded after birth. However, numerous studies have described the regenerative ability of the cord blood cells in various incurable diseases. The umbilical cord blood (UCB)-derived stem cells are obtained through non-invasive methods that are not harmful to both the mother and the fetus. Furthermore, the cord blood stem cells are more immature than the adult stem cells and expand readily in vitro. The mesenchymal stem cells (MSCs) have the capacity to differentiate in vitro into various mesodermal (bone, cartilage, tendon, muscle, and adipose), endodermal (hepatocyte), and ectodermal (neurons) tissues. This review describes the immunological properties of the human UCB-MSCs to assess their potential usefulness in the allogeneic transplantation for the regenerative medicine.

Chondrogenic Properties of Human Periosteum-derived Progenitor Cells (PDPCs) Embedded in a Thermoreversible Gelation Polymer (TGP)

  • Choi, Yang-Soo;Lim, Sang-Min;Shin, Hyun-Chong;Lee, Chang-Woo;Kim, Dong-Il
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권6호
    • /
    • pp.550-552
    • /
    • 2006
  • Periosteum-derived progenitor cells (PDPCs) were isolated using a fluorescence-activated cell sorter and their chondrogenic potential in biomaterials was investigated for the treatment of defective articular cartilage as a cell therapy. The chondrogenesis of PDPCs was conducted in a thermoreversible gelation polymer (TGP), which is a block copolymer composed of temperature-responsive polymer blocks such as poly(N-isopropylacrylamide) and of hydrophilic polymer blocks such as polyethylene oxide, and a defined medium that contained transforming growth $factor-{\beta}3\;(TGF-{\beta}3)$. The PDPCs exhibited chondrogenic potential when cultured in TGP. As the PDPCs-TGP is an acceptable biocompatible complex appropriate for injection into humans, this product might be readily applied to minimize invasion in a defected knee.

Molecular Characterization of Neurally Differentiated Human Bone Marrow-derived Clonal Mesenchymal Stem Cells

  • Yi, TacGhee;Lee, Hyun-Joo;Cho, Yun-Kyoung;Jeon, Myung-Shin;Song, Sun U.
    • IMMUNE NETWORK
    • /
    • 제14권1호
    • /
    • pp.54-65
    • /
    • 2014
  • Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent, with the ability to differentiate into different cell types. Additionally, the immunomodulatory activity of MSCs can downregulate inflammatory responses. The use of MSCs to repair injured tissues and treat inflammation, including in neuroimmune diseases, has been extensively explored. Although MSCs have emerged as a promising resource for the treatment of neuroimmune diseases, attempts to define the molecular properties of MSCs have been limited by the heterogeneity of MSC populations. We recently developed a new method, the subfractionation culturing method, to isolate homogeneous human clonal MSCs (hcMSCs). The hcMSCs were able to differentiate into fat, cartilage, bone, neuroglia, and liver cell types. In this study, to better understand the properties of neurally differentiated MSCs, gene expression in highly homogeneous hcMSCs was analyzed. Neural differentiation of hcMSCs was induced for 14 days. Thereafter, RNA and genomic DNA was isolated and subjected to microarray analysis and DNA methylation array analysis, respectively. We correlated the transcriptome of hcMSCs during neural differentiation with the DNA methylation status. Here, we describe and discuss the gene expression profile of neurally differentiated hcMSCs. These findings will expand our understanding of the molecular properties of MSCs and contribute to the development of cell therapy for neuroimmune diseases.

Bone-like Apatite Morphology on Si-Zn-Mn-hydroxyapatite Coating on Ti-6Al-4V Alloy by Plasma Electrolytic Oxidation

  • Park, Min-Gyu;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.158-158
    • /
    • 2017
  • Titanium and its alloys have been used in the field dental and orthopedic implants because of their excellent mechanical properties and biocompatibility. Despite these attractive properties, their passive films were somewhat bioinert in nature so that sufficient adhesion of bone cells to implant surface was delayed after surgical treatment. Recently, plasma electrolyte oxidation (PEO) of titanium metal has attracted a great deal of attention is a comparatively convenient and effective technique and good adhesion to substrates and it enhances wear and corrosion resistances and produces thick, hard, and strong oxide coatings. Silicon(Si), Zinc(Zn), and Manganese(Mn) have a beneficial effect on bone. Si in particular has been found to be essential for normal bone and cartilage growth and development. And, Zn has been shown to be responsible for variations in body weight, bone length and bone biomechanical properties. Also, Mn influences regulation of bone remodeling because its low content in body is connected with the rise of the concentration of calcium, phosphates and phosphatase out of cells. The objective of this work was research on bone-like apatite morphology on Si-Zn-Mn-hydroxyapatite coating on Ti-6Al-4V alloy by plasma electrolytic oxidation. Anodized alloys were prepared at 280V voltage in the solution containing Si, Zn, and Mn ions. The surface characteristics of PEO treated Ti-6Al-4V alloy were investigated using XRD, FE-SEM, and EDS.

  • PDF

Electrochemical Behaviors of PEO-treated Ti-6Al-4V Alloy in Solution Containing Zn and Si Ions

  • Hwang, In-Jo;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.160-160
    • /
    • 2017
  • Commercially pure titanium (Cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Plasma electrolyte oxidation (PEO) enables control in the chemical composition, porous structure, and thickness of the TiO2 layer on Ti surface. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study on electrochemical behaviors of PEO-treated Ti-6Al-4V Alloy in solution containing Zn and Si ions. The morphology, the chemical composition, and the microstructure analysis of the sample were examined using FE-SEM, EDS, and XRD. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat. The promising results successfully demonstrated the immense potential of Si/Zn-TiO2 coatings in dental and biomaterials applications.

  • PDF

All-Inside 반월연골판 봉합술 (All-Inside Meniscal Repair)

  • 최남홍;김병연
    • 대한정형외과스포츠의학회지
    • /
    • 제12권1호
    • /
    • pp.8-15
    • /
    • 2013
  • 과거 반월연골판 파열의 치료로 절제술이 시행되었으나 절제술 후에 슬관절의 퇴행성 변화가 진행되어 골관절염이 발생한다는 보고와 함께, 반월연골판의 생역학적 기능이 밝혀지면서, 가능한 한 반월연골판을 보존하기 위해 적응증이 되는 경우 봉합술의 시행이 증가되고 있다. 반월연골판 봉합술의 방법으로 outside-in, inside-out, all-inside 방법 등이 시행되고 있으며, 상기 방법들 중 all-inside 봉합 방법의 적응증, 수술 방법 및 수술 결과에 대해 알아보고자 한다.

  • PDF

Corrosion Behavior of Si,Zn and Mn-doped Hydroxyapatite on the PEO-treated Surface

  • Park, Min-Gyu;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.78-78
    • /
    • 2017
  • Pure Titanium and alloy have been widely used in dental implants and orthopedics due to their excellent mechanical properties, biocompatibility and corrosion resistance. However, due to the biologically inactive nature of Ti metal implants, it cannot bind to the living bone immediately after transplantation into the body. In order to improve the bone bonding ability of titanium implants, many attempts have been made to alter the structure, composition and chemical properties of titanium surfaces, including the deposition of bioactive coatings. The PEO method has the advantages of short experiment time and low cost. These advantages have attracted attention recently. Recently, many metal ions such as silicon, magnesium, zinc, strontium, and manganese have received attention in this field due to their impact on bone regeneration. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation and promotes bone metabolism and growth. Manganese (Mn) is an essential trace metal found in all tissues and is required for normal amino acid, lipid, protein and carbohydrate metabolism. The objective of this work was research on the corrosion behavior of Si, Zn and Mn-doped hydroxyapatite on the PEO-treated surface. Anodized alloys was prepared at 270V~300V voltage in the solution containig Zn, Si, and Mn ions. Ion release test was carried out using potentidynamic and AC impedance method in 0.9% NaCl solution. The surface characteristics of PEO treated Ti-6Al-4V alloy were investigated using XRD, FE-SEM, AFM and EDS.

  • PDF