• Title/Summary/Keyword: Cartan subalgebra

Search Result 3, Processing Time 0.016 seconds

Cartan Subalgebras of a Semi-restricted Lie Algebra

  • Choi, Byung-Mun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.6 no.1
    • /
    • pp.105-111
    • /
    • 1993
  • In this paper we show that if a semi-restricted Lie algebra L has an one dimensional toral Cartan subalgebra, then L is simple and $L\simeq_-sl(2)$ or $W(1:\underline{1})$. And we study that if L is simple but not simple and H is 2-dimensional, then H is a torus.

  • PDF

SOME REDUCED FREE PRODUCTS OF ABELIAN C*

  • Heo, Jae-Seong;Kim, Jeong-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.997-1000
    • /
    • 2010
  • We prove that the reduced free product of $k\;{\times}\;k$ matrix algebras over abelian $C^*$-algebras is not the minimal tensor product of reduced free products of $k\;{\times}\;k$ matrix algebras over abelian $C^*$-algebras. It is shown that the reduced group $C^*$-algebra associated with a group having the property T of Kazhdan is not isomorphic to a reduced free product of abelian $C^*$-algebras or the minimal tensor product of such reduced free products. The infinite tensor product of reduced free products of abelian $C^*$-algebras is not isomorphic to the tensor product of a nuclear $C^*$-algebra and a reduced free product of abelian $C^*$-algebra. We discuss the freeness of free product $II_1$-factors and solidity of free product $II_1$-factors weaker than that of Ozawa. We show that the freeness in a free product is related to the existence of Cartan subalgebras in free product $II_1$-factors. Finally, we give a free product factor which is not solid in the weak sense.

ON THE NILPOTENCY OF CERTAIN SUBALGEBRAS OF KAC-MOODY ALGEBRAS OF TYPE AN(r)

  • Kim, Yeon-Ok;Min, Seung-Kenu
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.439-447
    • /
    • 2003
  • Let (equation omitted) be a symmetrizable Kac-Moody algebra with the indecomposable generalized Cartan matrix A and W be its Weyl group. Let $\theta$ be the highest root of the corresponding finite dimensional simple Lie algebra ${\gg}$ of g. For the type ${A_N}^{(r)}$, we give an element $\omega_{o}\;\in\;W$ such that ${{\omega}_o}^{-1}({\{\Delta\Delta}_{+}})\;=\;{\{\Delta\Delta}_{-}}$. And then we prove that the degree of nilpotency of the subalgebra (equation omitted) is greater than or equal to $ht{\theta}+1$.