JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 6, June 1993

Cartan Subalgebras of a Semi-restricted Lie Algebra

BYUNG-MUN CHOI

ABSTRACT. In this paper we show that if a semi-restricted Lie algebra L has an one dimensional toral Cartan subalgebra, then L is simple and $L \cong sl(2)$ or $W(1:\underline{1})$. And we study that if L is semi-simple but not simple and H is 2-dimensional, then H is a torus.

1. Preliminaries.

Let F be a field of prime characteristic. If a Lie algebra L has a map $x \to x^p$ of L to L satisfying

- 1) $(\alpha x)^p = \alpha^p x^p$ for any $\alpha \in F, x \in L$
- 2) $(ad x)^p = ad (x^p)$
- 3) $(x+y)^p = x^p + y^p + \sum_{i=1}^{p-1} s_i(x,y)$ where $is_i(x,y)$ is the coefficient of λ^{i-1} in $(ad (\lambda x + y)^{p-1})x$,

then we say that L is restricted and the map is called *p*-mapping.

If K is any subalgebra of L, we define $\overline{K} = \langle x^{p^n} | x \in K, n \in \mathbb{N} \rangle$. Clearly \overline{K} is contained in any restricted subalgebra of L which contains K. On the other hand, if $x, y \in K$ then for $m, n \in \mathbb{N}$,

$$[x^{p^{n}}, y^{p^{m}}] = (\text{ad } x)^{p^{n}} y^{p^{m}} = -(\text{ad } x)^{p^{n}-1} (\text{ad } y)^{p^{m}} x \in [K, K]$$

Thus we have;

Received by the editors on June 30, 1993.

1980 Mathematics subject classifications: Primary 17B20.

This paper was supported by Non Directed Research Fund, Korea Reasearch Foundation, 1991

LEMMA 1.1. \overline{K} is the smallest restricted subalgebra of L containing K. Furthermore $[\overline{K}, \overline{K}] \subseteq [K, K]$.

Following [3, p 119] we define $x \in L$ to be nilpotent if $x^{p^n} = 0$ for some $n \in \mathbb{N}$, and define $x \in L$ to be semisimple if x satisfies some separable *p*-polynomial

 $x^{p^{n}} + a_{n-1}x^{p^{n-1}} + \dots + a_{1}x^{p} + a_{0}x, n \in \mathbb{N}, a_{n-1}, \dots, a_{0} \in F, a_{0} \neq 0.$

If $x^p = x$ (and hence is semisimple) we say x is toral. We say a subset K of L is nil if every $x \in K$ is nilpotent. A subalgebra T of L is called a *torus* (or a toral subalgebra) if every $x \in T$ is semisimple. A torus is necessarily abelian. By [3] (Theorem 5.13) a finite dimensional torus has a basis consisting of toral elements.

THEOREM 1.2 [4]. Suppose that L is a restricted Lie algebra and $x \in L$. Then there exist unique elements s, z in L such that;

(1) s, z are p-polynomials in x.

(2) s is semisimple and z is nilpotent.

Moreover s is a linear combination of p-polynomials y_1, \ldots, y_n in x with $y_i^p = y_i$ for each i.

For any Lie algebra L, the derivation algebra DerL is restricted where D^p is the *p*-th power of $D \in \text{Der}L$. If L is semi-simple, we can identify L with ad L in the restricted algebra DerL. We will say Ha Cartan subalgebra if H is nilpotent and self-normalized.

THEOREM 1.3 (Kaplansky, [2]). Let L be a finite dimensional simple Lie algebra over F containing a one dimensional Cartan subalgebra H. Suppose that the additive subgroup of H^* generated by the roots has rank one (this always holds if L is restricted). Then $L \cong sl(2)$ or $W(1:\underline{1})$. A Lie algebra L is called rank one provided that L has a one dimensional Cartan aubalgebra. In 1984, G.M. Benkart and J.M. Osborn proved a generalization of Kaplansky's Theorem;

THEOREM 1.4 [1]. Let L be a finite-dimensional simple Lie albegra of rank one. Then L is sl(2) or an Albert-Zassenhaus algebra.

Let $H \subseteq L$ be a Cartan subalgebra and \overline{H} be the restricted subalgebra of DerL generated by H. Let T denote the (unique) maximal torus of \overline{H} . We call dim T the *toral* rank of L with respect to H.

THEOREM 1.5 [2]. L is a simple Lie algebra over F and has toral rank one if and only if

 $L \cong sl(2), \quad W(1:\underline{\mathbf{n}}), \quad or \quad H(2:\underline{\mathbf{n}}:\Phi)^{(2)}.$

2. The semi-restricted Lie algebra.

As a generalization of restrictedness, Schue[4] introduced the notion of a semi-restricted Lie algebra.

DEFINITION 2.1. Suppose that L is a Lie algebra, H a Cartan subalgebra of L, and $L = H + \sum L_{\alpha}$ is the Cartan decomposition of L.

L is semi-restricted with respect to H if;

(a) H is restricted

(b) $(ad h)^p x = [h^p, x]$ for $h \in H, x \in L$

(c) for each α with $x \in L_{\alpha}$, the semi-simple component of ad x is equal to ad s for some semi-simple element $s \in H$.

For a semi-simple Lie algebra L, embedding L into DerL via adjoint mapping, we take a modification of the definition (c); for each root α with $x \in L_{\alpha}$, the semi-simple component of x is equal to s for some semi-simple element $s \in H$. Furthermore the decomposition x = s + n is unique. PROPOSITION 2.2. If L is restricted and H is a Cartan subalgebra, then L is semi-restricted with respect to H.

PROOF. *H* is restricted since \overline{H} is a nilpotent subalgebra containing *H*. Let *S* be the subspace of semi-simple elements of *H*. Suppose α is a non-zero root and $x \in L_{\alpha}$. Then $[s, x^p] = 0$ for $s \in S$. Thus if x = t + w is the decomposition of *x* with *t* semi-simple, then t^p is the semi-simple component for x^p so that $[S, t^p] = 0$ and hence [S, t] = 0. Thus $t \in H$.

The converse of the proposition is not true. For example, $W(1:\underline{2})$ is not restricted. But $H = \langle xD, x^{p+1}D, \ldots, x^{p(p-1)+1}D \rangle$ is a Cartan subalgebra and $W(1:\underline{2})$ is semi-restricted with respect to H. Any subalgebra of L containing H is also semi-restricted with respect to H and K is an ideal of L with $K_0 = K \cap H$ restricted, then L/K is semi-restricted with respect to H/K_0 .

DEFINITION 2.3. Suppose L is a Lie algebra and H is a Cartan subalgebra. The maximal number of linearly independent roots in the Cartan decomposition of L relative to H, will called the *type* of L with respect to H.

PPRPOSITION 2.4 ([4] p 29). Suppose L is semi-restricted with respect to H and the center of L is nil. Let S be the subspace of semi-simple elements of H. If L is of type d with respect to H, then $d = \dim S$.

Using the proposition we restate the Kaplansky's Theorem as follow; If L is semi-restricted and type 1, then L is either sl(2) or $W(1:\underline{1})$.

For a semi-restricted Lie algebra L, let x = s + n ($x \in L_{\alpha}$ a root vector) be the decomposition of x. Then for sufficiently large integer

108

k we have

$$x^{p^{k}} = (s+z)^{p^{k}} = s^{p^{k}} + z^{p^{k}} = s^{p^{k}} \in H.$$

LEMMA 2.5. Let L be as above. If $x \in L_{\alpha}$ then $\alpha(x^{p^k}) = 0$ for some x^{p^k} in H.

PROOF. For $x \in L_{\alpha}, x^{p^{k}} \in H$ for sufficiently large integer k. Since $0 = [x^{p^{k}}, x] = \alpha(x^{p^{k}})x$, we have $\alpha(x^{p^{k}}) = 0$.

Let L be a semi-simple Lie algebra over F with a Cartan subalgebra H and semi-restricted with respect to H.

LEMMA 2.6. Let I be an H-invariant ideal of L. If $\overline{I} \cap H = (0)$, then I is nil.

PROOF. Since I is H-invariant, we have $I = \sum_{\alpha \in H^*} I_{\alpha}$, where $I_{\alpha} = I \cap L_{\alpha}$. If $x \in L_{\alpha}$ then $x^{p^*} \in \overline{I} \cap H = (0)$ for some k, i.e., x is nilpotent. Then by Engel-Jacobson Theorem, I is nil.

THEOREM 2.7. If H is one-dimensional toral, then L is simple and $L \cong sl(2)$ or $W(1:\underline{1})$.

PROOF. Let I be a nonzero ideal of L. I is not nil since L is semi-simple. Lemma 2.6 shows that $(0) \neq \overline{I} \cap H \subseteq H$. As dimH = $1, \overline{I} \cap H = H$. So $H \subseteq \overline{I}$, but then $L_{\alpha} = [H, L_{\alpha}] \subseteq [\overline{I}, L_{\alpha}] \subseteq I$. Since H is one dimensional toral, $L = H + \sum L_{i\alpha}$ for some nonzero root α . If $I = \sum_{j=1}^{p-1} L_{i\alpha}$ then for $x \in L_{i\alpha}, i\alpha(x^{p^k}) = 0$ for sufficiently large integer k. So for j in $\mathbb{Z}_p^*, j\alpha(x^{p^k}) = 0$. Hence x is nilpotent and by Engel-Jacobson Theorem, I is nil. This contradict to the semi-simplicity of L. Hence I = L, so L is simple. The Kaplansky's Theorem proves the remaining conclusion.

Now we indroduce a property of nonsolvable semi-restricted Lie algebra. This has been proved by Schue [4].

BYUNG-MUN CHOI

LEMMA 2.8. Suppose L is semirestricted, H a Cartan subalgebra, and $L = \sum L_{\alpha}$ is the Cartan decomposition with $H = L_0$. Let

$$W = \sum [L_{\alpha}, L_{-\alpha}] + \sum L_{\alpha}, \alpha \neq 0$$

If L is not solvable and all root vectors are nilpotent, then $\beta(\sum [L_{\alpha}, L_{-\alpha}]) \neq 0$ for some root $\beta \neq 0$.

THEOREM 2.9. Let L be a non-simple semi-simple Lie algebra with a two-dimensional Cartan subalgebra H and L is semi-restricted with respect to H. Then H is a torus.

PROOF. Assume H is not a torus. Since L is semi-restricted, H must have a maximal torus of dimension 1. Then $L = H + \sum L_{i\alpha}$ where α is a non-zero root of L. Let $x \in L_{i\alpha}, i \in \mathbb{Z}_p^*$, then $[x^{p^k}, x] = 0$ implies $\alpha(x^{p^k}) = 0$ for some k. So x is nilpotent.

Let K be an ideal of L, then we have $K = K_0 + \sum K_{i\alpha}$ with $K_{i\alpha} = L_{i\alpha} \cap J$.

If K_0 is nil, by the Engel-Jacobson Theorem, K is nilpotent. This contradict to the semisimplicity of L. Thus K_0 is not nil and so $K_{i\alpha} = L_{i\alpha}$ since K is an ideal of L.

Now let I be the ideal of L, generated by $\sum L_{i\alpha}$. Then $I = I_0 + \sum L_{i\alpha}$. (and I_0 is not nil). Since any ideal of I is also an ideal of L, I is simple and we have $I \neq L$.

From the non-solvability of L, Lemma 2.8 shows $I_0 = \sum_{i \in z_p^*} [L_{i\alpha}, L_{-i\alpha}] \neq (0)$. Hence the dimension of the Cartan subalgebra I_0 of I is one. Thus the Kaplansky theorem shows that $I \cong \text{sl}(2)$ or $W(1:\underline{1})$. But the derivations of I are all inner. This contradict to $I \neq L \subseteq \text{Der}L$.

References

^{1.} G.M. Benkart and J.M. Osborn, Rank one Lie algebras, Annals of Math. 119 (1984), 437-463.

- 2. G.M. Block and R.L. Wilson, The simple Lie p-algebras of rank two, Annals of Math. 115 (1982), 93-168.
- 3. N. Jacobson, Lie Algebras, Interscience, New York.
- 4. J.R. Schue, Cartan decompositions for Lie albegras of prime characteristic,
 J. Algebra 11 (1969), 25-52, Errata, 13, 558.
- 5. R.L. Wilson, Cartan subalgebra and tori in prime characteristic, Proc. of A.M.S. 53 no.2 December (1975), 325-327.
- 6. D.J. Winter, On the toral structure of Lie p-algebras, Acta Math. 123 (1969), 69-81.

DEPARTMENT OF MATHENATICS TAEJON UNIVERSITY TAEJON, 300-716, KOREA