• Title/Summary/Keyword: Carrier-mediated transport

Search Result 43, Processing Time 0.023 seconds

Pharmacokinetic Modeling and Simulation of the Carrier-Mediated Hepatic Transport of Organic Anions (음이온계 약물의 간수송과정에 있어서 담체매개 수송의 약물동력학적 모델링 및 시뮬레이션)

  • 이준섭;강민희;김묘경;이명구;정석재;심창구;정연복
    • YAKHAK HOEJI
    • /
    • v.47 no.2
    • /
    • pp.110-119
    • /
    • 2003
  • The purpose of the present study was to kinetically investigate the carrier-mediated uptake in the hepatic transport of organic anions, and to simulate the ″in vivo counter-transport″ phenomena, using kinetic model which was developed in this study. The condition that the mobility of carrier-ligand complex is greater than that of free carrier is not essential for the occurrence of ″counter-transport″ phenomenon. To examine the inhibitory effects on the initial uptake of a ligand by the liver, it is necessary to judge whether the true counter-transport mechanism (trans-stimulation) is working or not. The initial plasma disappearance curves of a organic anion were then kinetically analyzed based on a flow model, in which the ligand is eliminated only from the peripheral compartment (liver compartment). Moreover, ″in vive counter-transport″ phenomena were simulated based on the perfusion model which incorporated the carrier-mediated transport and the saturable intracellular binding. The ″in vivo counter-transport″ phenomena in the hepatic transport of a organic anion were well demonstrated by incorporating the carrier-mediated process. However, the ″in vivo counter-transport″ phenomena may be also explained by the enhancement of back diffusion due to the displacement of intracellular binding. In conclusion, one should be more cautious in interpreting data obtained from so-called ″in vivo counter-transport″ experiments.

Role of Endogenous Transport Systems for the Transport of Basic and Acidic Drugs at Blood-Brain Barrier (염기성 및 산성 약물의 혈액-뇌관문 투과에 관여하는 내인적 수송계)

  • Kang, Young-Sook
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.1
    • /
    • pp.1-9
    • /
    • 1993
  • The endothelial cell of brain capillary called the blood-brain barrier (BBB) has carrier-mediated transport systems for nutrients and drugs. The mechanism of the BBB transport of basic and acidic drugs has been reviewed and examined for endogenous transport systems in BBB in WKY and SHRSP. Acidic drugs such as salicylic acid and basic drugs such as eperisone are taken up in a carrier mediated manner through the BBB via the monocarboxylic acid and amine transport systems. The specific dysfunction for the choline transport at the BBB in SHRSP would affect the function of the brain endothelial cell and brain parenchymal cell. The utilization of the endogenous transport systems of monocarboxylic acid and amine could be promising strategy for the effective drug delivery to the brain.

  • PDF

Pharmacokinetic Modelling and Simulation of the Counter-transport in the Hepatic Transport of Organic Anions (음이온계 약물의 간수송과정에 있어서 대향수송의 약물동력학적 모델링 및 시뮬레이션)

  • Song, Suk-Gil;Lee, Jun-Seup;Chung, Youn-Bok
    • YAKHAK HOEJI
    • /
    • v.49 no.4
    • /
    • pp.275-283
    • /
    • 2005
  • The purpose of the present study was to kinetically investigate the carrier-mediated uptake in the hepatic transport of organic anions, and to simulate the 'in vivo counter-transport' phenomena, using kinetic model which was developed in this study. The condition that the mobility of carrier-ligand complex is greater than that of free carrier is not essential for the occurrence of 'counter-transport' phenomenon. To examine the inhibitory effects on the initial uptake of organic anions by the liver, it is necessary to judge whether the true counter-transport mechanism (trans-stimulation) is working or not. Effects of bromophenol blue (BPB) or bromosulfophthalein (BSP) on the plasma disappearance curves of a 1-anilino-8-naphthalene sulfonate (ANS) were then kinetically analyzed based on a flow model, in which the ligand is eliminated only from the peripheral compartment (liver compartment). Moreover, 'in vivo counter-transport' phenomena were simulated based on the perfusion model which incorporated the carrier-mediated transport and the saturable intracellular binding. The 'in vivo counter-transport' phenomena in the hepatic transport of a organic anions were well demonstrated by incorporating the carrier-mediated process. However, the 'in vivo counter-transport' phenomena may be also explained by the enhancement of back diffusion due to the displacement of intracellular binding. In conclusion, one should be more cautious in interpreting data obtained from so-called 'in vivo counter-transport' experiments.

Kinetic Analysis of the Counter-transport Phenomenon in the Hepatic Transport of Organic Anionic Drugs (유기 음이온계 약물의 간수송과정에 있어서 대향수송현상에 관한 속도론적 연구)

  • Chung, Youn-Bok;Han, Kun;No, Jung-Ryul
    • Journal of Pharmaceutical Investigation
    • /
    • v.22 no.4
    • /
    • pp.289-300
    • /
    • 1992
  • The counter-transport phenomena in the hepatic transport of 1-anilino-8-naphthalene sulfonate (ANS) were kinetically investigated by analyzing the plasma disappearance-time profiles and the transport into the isolated hepatocytes. In vivo "counter transport phenomena" were simulated based on the perfusion model which incorporated the carrier-mediated transport and the saturable intracellular binding. The condition that the mobility of carrier-ligand complex is greater than that of free carrier is not essential for the occurrence of counter-transport phenomenon. To examine the inhibitory effects on the initial uptake of a ligand by the liver, it is necessary to judge whether the true counter-transport mechanism (trans-stimulation) is working or not. The initial plasma disappearance curves of ANS were then kinetically analyzed based on a two-compartment model, in which the ligand is eliminated only from the peripheral compartment (liver compartment). No effects on the initial plasma disappearance rates of ANS were observed after preloading of bromophenol blue (BPB) or rose bengal (RB) in the liver. Inhibitory effect of BPB or RB on the initial uptake (or efflux) rates of ANS by the isolated hepatocytes were not observed, suggesting that the true counter transport mechanism is not working. In conclusion, checking the preloading effects of transstimulation on the initial uptake of a ligand by the liver could be a useful criterion for carrier cycling and common use of the same carrier between two ligands. However, one cannot exclude those possibilities even if the preloading effects cannot be observed.

  • PDF

Characterization of Absorption Process of Taurine Across Rat Small Intestine

  • Kim, Kyung-Soon
    • Archives of Pharmacal Research
    • /
    • v.6 no.2
    • /
    • pp.109-114
    • /
    • 1983
  • A mechanism of taurine transfer across the rat small intestine was elucidated by using the in situ recirculation perfusion or loop method. Taurine uptake was saturable, Km= 39.9 mM, and energy dependent, and required sodium. The close structural analogues, aminomethane sulfonic acid, .gamma.-amino-butyric acid, hypotaurine, and .betha.-alanine, reduced significantly taurine uptake when present in 10-fold excess. The .alpha.-amino acid, glycine, did not inhibit uptake. Hence, all of these findings lead to a conclusion that a carrier-mediated transport system for taurine exists in the small intestine.

  • PDF

Podand-Mediated Transport of $Ag^+$ in a Bulk Liquid Membrane System

  • 조문환;이상철;양승창;신송석;김경태
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.12
    • /
    • pp.1109-1111
    • /
    • 1996
  • The Podand Ⅰ (Figure 1) has been studied as cation carrier in a bulk liquid membrane system. Ag+ and some other transition metal ions (M2+=Cu, Ni, Co, Zn, and Cd) have been transported using the podand as carrier in a bulk liquid membrane system. Studies on the transport of equimolar mixtures of two or three competing components have also been carried out with the same system. Ag+ exhibited a higher transport rate than the other M2+ in the competitive experiments. Ligand structure and the equilibrium constant for complex formation are important parameters in the transport of the metal ions.

Carrier-Mediated Tissue Distribution and Blood-Brain Barrier Transport of New Quinolones

  • Tsuji, Akira
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.57-63
    • /
    • 1997
  • Animal and clinical investigations have shown that fluoroquinolones, new quinolone antibacterial agents (NQs), are well absorbed across the intestinal tract, with a bioavailability of 60-90% after oral administration. Although some types of carrier-mediated intestinal transport mechanisms have been reported for enoxacin (ENX), ofloxacin (OFLX) and sparfloxacin (SPFX), recent results using a human intestinal epithelial cell line, Caco-2, indicated a passive or nonsaturable transport of SPFX, one of the most hydrophobic NQs. The mechanism underlying the intestinal absorption of NQs is still largely unknown. The distribution of NQs into peripheral tissues including erythrocytes is very rapid and their tissue-to-plasma concentration ratios (Kp) are considerably larger than those of inulin (an extracellular fluid space marker), in spite of almost complete ionization of NQs at the physiological pH. Our findings suggest that OFLX and lomefloxacin (LFLX) are taken up by rat erythrocytes via a transport system common to that of a water-soluble vitamin, nicotinic acid.

  • PDF

A study on myo-inositol transport system in peripheral nerve isolated from lead-intoxicated rat. (납 중독 랫드의 말초신경내 myo-inositol 수송 체계에 관한 연구)

  • 정명규;조해용
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.2
    • /
    • pp.21-26
    • /
    • 1996
  • In our previous studies, we reported that lead intoxicated nerve cell by inhibition of the Na$^{+}$-K$^{+}$ ATPase activity and reduction of myo-inositol in nerve cell. As the second series of experiments, in order to understand toxic mechanism of lead for nerve cell, the characteristics of myo-inositol transport system and the effect of lead on its system have been studied in the sciatic nerves of control and lead-treated rats. A lead intoxicated animal model was induced by feeding diet containing lead to Sprague-Dawley rat for two weeks. Four weeks aged Sprague-Dawley rats were divided into three group : normal control group, 10ppm-lead treated group, 100ppm-lead treated group. All rats were sacrified at the end of two weeks. The rate o myo-inositol transport by sciatic nerve isolated from lead-treated rat was significantly decreased compared with that of control rat. This deficit results from that myo-inositol transport system which is carrier mediated and sodium-potassium dependent was inhibited by the lead treatment (both 10ppm and 100ppm) due to increase of the Km value without affecting Vmax value for myo-inositol carrier. These observations suggest that the toxic mechanism of lead on nerve myo-inositol transport system might be a change of affinity without change of maximum transport velocity for carrier.

  • PDF

Separation and Concentration of L-Phenylalanine using a Supported Liquid Membrane

  • Jeong Woo Choi;Kyu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.24-31
    • /
    • 1998
  • The separation and concentration of L-phenylalanine (L-Phe) using a supported liquid membrane (SLM) is investigated. A cation complex agent, di-2-ethylhexyl phosphoric acid (D2EHPA), is used as a carrier in the SLM with n-Heptane as a solvent. The reaction order and equilibrium constant in the formation reaction of L-phe-carrier complex are obtained from the extraction experiment. A mathematical model for a carrier mediated counter transport process is proposed to estimate the diffusion coefficient of L-phe-carrier complexly in the liquid membrant. Permeation experiments of L-phe using a SLM are performed under various operating conditions and optimum conditions for the transport of L-phe are obtained. Concentration of L-phe in the strip phase against its concentration is observed. Transport rate of glucose through liquid membrane is less than that of L-phe in the competitive transport of L-phe and glucose. And the existence of glucose reduced the transport rate of L-phe. The performance of separation with continuous strip phase is increased due to the dilution effect in the strip phase.

  • PDF