• Title/Summary/Keyword: Carrier to noise ratio

Search Result 183, Processing Time 0.027 seconds

Fast Carrier Recovery for High-Order QAM Systems (고차의 QAM 시스템을 위한 고속 반송파 복원)

  • Lee, Chul-Soo;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4C
    • /
    • pp.371-376
    • /
    • 2010
  • In this paper, we propose a new fast carrier recovery algorithm for high-order QAM systems. The proposed algorithm detects carrier frequency offset from the phase differences among the received symbols directly and combines it with the conventional carrier recovery, so that it is possible to achieve the carrier recovery with wide tracking range and fast acquisition time. Simulation results show that the proposed carrier recovery method reduces acquisition time at large frequency offset and low signal-to-noise ratio (SNR).

Error Rate Performance of Fading Differential Phase Shift Keying(DPSK) Communication Systems (페이딩의 영향을 받는 디지털 위상차변조방식의 오율특성)

  • 이형재;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.7 no.1
    • /
    • pp.37-45
    • /
    • 1982
  • We have analyzed the effect of multipath cochannel interference and Gaussian noise on binary DPSK systems used in land mobile radio communications. Considering multipath channel as non-selective Rayleigh channel, we have found a gnenral equation for bit error rates (BER) deriving the probability density function (p.d.f) of output of phase detector. The numerical results are shown in graphs and discussed as functions of carrier to noise power ratio (CNR), carrier to interferer power ratio (CIR) and correlation of signal component over the pulse length.

  • PDF

Efficient ICI Self-Cancellation Scheme for OFDM Systems

  • Kim, Kyung-Hwa;Seo, Bangwon
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.537-544
    • /
    • 2014
  • In this paper, we present a new inter-carrier interference (ICI) self-cancellation scheme - namely, ISC scheme - for orthogonal frequency-division multiplexing systems to reduce the ICI generated from phase noise (PHN) and residual frequency offset (RFO). The proposed scheme comprises a new ICI cancellation mapping (ICM) scheme at the transmitter and an appropriate method of combining the received signals at the receiver. In the proposed scheme, the transmitted signal is transformed into a real signal through the new ICM using the real property of the transmitted signal; the fast-varying PHN and RFO are estimated and compensated. Therefore, the ICI caused by fast-varying PHN and RFO is significantly suppressed. We also derive the carrier-to-interference power ratio (CIR) of the proposed scheme by using the symmetric conjugate property of the ICI weighting function and then compare it with those of conventional schemes. Through simulation results, we show that the proposed ISC scheme has a higher CIR and better bit error rate performance than the conventional schemes.

Achievable Bit Rate Comparison of Cyclic Prefixed CI/OFDM System and Single Carrier System (Cyclic Prefixed CI/OFDM 시스템과 단일반송파 시스템의 ABR 비교 분석)

  • Zheng, Hui;Hwang, Jae-Ho;Hwnag, Dae-Geun;Kim, Jae-Moung
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.6-16
    • /
    • 2010
  • Since OFDM system suffers from high peak-to average power ratio(PAPR) drawbacks, more energy has been converted to seek for a new substitutable system which can maintain OFDM system's inherent virtues while avoid its defects. Consequently, a new multicarrier system called as CI/OFDM system has been proposed which applied carrier interferometry(CI) code to OFDM system. Due to its low PAPR advantage and orthogonal property, it has received more and more attention. Simultaneously, an old technique called single carrier(SC) system has retaken its attractions for the same purposes. This paper analyzes two cyclic prefixed transmission schemes variants of OFDM system: 1.carrier interferometry-Orthogonal Frequency-Division Multiplexing (CI/OFDM); 2. Cyclic prefixed single carrie(CP-SC) with frequency domain equalization. We compare the achievable bit rate transmission of the two systems in terms of signal to noise ratio(SNR) by mathematical derivation. We demonstrated that CI/OFDM achieves a bit higher transmission bit rate to that of the CP-SC with frequency domain equalizer.

A Design of SINR Measurement Unit for IEEE 802.16m (IEEE 802.16m 시스템의 SINR 측정기의 설계)

  • Kim, Jun-Woo;Park, Youn-Ok;Kim, Whan-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12A
    • /
    • pp.1097-1104
    • /
    • 2010
  • This paper presents the signal-to-noise ratio (SNR) and signal-to-interference plus noise ratio (SINR) estimation based on A-Preamble of IEEE 802.16m IMT-Advanced WiMax system with simulation results. The downlink signal of IEEE 802.16m has two kinds of A-Preambles: the PA-Preamble and the SA-Preamble. This paper proposes the effective method of estimating SNR and SINR with A-Preambles, and also shows that this method can recognize the ICI(Inter-Carrier-Interference) occurrence due to doppler frequency. With the recognition of ICI, the mobile station can save the power by operating 1-tap equalizer in usual cases, and activating ICI mitigation module only when it perceives the ICI occurrence.

Optimization of a Radio-frequency Atomic Magnetometer Toward Very Low Frequency Signal Reception

  • Lee, Hyun Joon;Yu, Ye Jin;Kim, Jang-Yeol;Lee, Jaewoo;Moon, Han Seb;Cho, In-Kui
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.213-219
    • /
    • 2021
  • We describe a single-channel rubidium (Rb) radio-frequency atomic magnetometer (RFAM) as a receiver that takes magnetic signal resonating with Zeeman splitting of the ground state of Rb. We optimize the performance of the RFAM by recording the response signal and signal-to-noise ratio (SNR) in various parameters and obtain a noise level of 159 $fT{\sqrt{Hz}}$ around 30 kHz. When a resonant radiofrequency magnetic field with a peak amplitude of 8.0 nT is applied, the bandwidth and signal-to-noise ratio are about 650 Hz and 88 dB, respectively. It is a good agreement that RFAM using alkali atoms is suitable for receiving signals in the very low frequency (VLF) carrier band, ranging from 3 kHz to 30 kHz. This study shows the new capabilities of the RFAM in communications applications based on magnetic signals with the VLF carrier band. Such communication can be expected to expand the communication space by overcoming obstacles through the high magnetic sensitive RFAM.

Design of Downlink Channel for Transportable KOMPSAT Ground Station Using Sub-Carrier Signal (부 반송파를 사용하는 이동형 다목적실용위성 관제국에 대한 하향 링크 채널 설계)

  • Ahn, Sang-Il;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.3
    • /
    • pp.313-321
    • /
    • 2009
  • This paper describes the downlink design of a transportable small-sized KOMPSAT ground station using sub-carrier signal. Based on the analysis of the transmission modes of satellite real-time telemetry and range measurement signals, the downlink channel design of KOMPSAT ground station using sub-carrier signal was processed. By considering the threshold signal-to-noise ratio of real-time 2 kbps telemetry signal and the required signal-to-noise ratio for satellite range measurement, the small-sized KOMPSAT downlink channel with G/T value of 6.5 dB/K was designed. The real G/T of implemented ground station was proven to be 6.62 dB/K when measured using the Sun. Moreover, through interface test with KOMPSAT, the ground station has shown the required link performance for real-time telemetry acquisition using sub-carrier and was consequently evaluated to be adequate for a transportable small-sized KOMPSAT ground station.

Compensation of Phase Noise and IQ Imbalance in the OFDM Communication System of DFT Spreading Method (DFT 확산 방식의 OFDM 통신 시스템에서 위상잡음과 직교 불균형 보상)

  • Ryu, Sang-Burm;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • DFT-spread OFDM(Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing) is very effective for solving the PAPR(Peak-to-Average Power Ratio) problem. Therefore, the SC-FDMA(Single Carrier-Frequency Division Multiple Access) which is basically same to the DFT spread OFDM was adopted as the uplink standard of the 3GPP LTE ($3^{rd}$ Generation Partnership Project Long Term Evolution). Unlike the ordinary OFDM system, the SC-FDMA using DFT spreading method is vulnerable to the ICI(Inter-Carrier Interference) problem caused by the phase noise and IQ(In-phase/Quadrature) imbalance and effected FDE(Frequency Domain Equalizer). In this paper, the ICI effects from the phase noise and IQ imbalance which can be problems in uplink transmission are analyzed according the back-off level of HPA. Next, we propose the equalizer algorithm to remove the ICI effects. This proposed equalizer based on the FDE can be considered as up-graded and improved version of PNS(Phase Noise Suppression) algorithm. This proposed equalizer effectively compensates the ICI resulting from the phase noise and IQ imbalance. Finally, through the computer simulation, it can be shown that about SNR=14 dB is required for the $BER=10^{-4}$ after ICI compensation when the back-off is 4.5 dB, $\varepsilon=0.005$, $\phi=5^{\circ}$, and $pn=0.06\;rad^2$.

A study on the Conducted Noise Reduction in Three-Phase Boost Converter using Random Pulse Width Modulation (Random PWM 기법을 이용한 3상 승압형 컨버터 전도노이즈 저감에 관한 연구)

  • Jung, Dong-Hyo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.120-125
    • /
    • 2002
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. In the switching-mode power converter, the output voltage is generally controlled by varying the duty ratio of main switch. When a converter operates in steady state, duty ratio of the converter is kept constant. So the power of switching noise is concentrated in specific frequencies. Generally, to reduce the EMI and improve the immunity of converter system, the switching frequency of converter needs to be properly modulated during a rectified line period instead of being kept constant. Random Pulse Width Modulation (RPWM) is performed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300V/1kW with 5%~30% white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

Inter-carrier Interference Reduction Scheme for SFBC-OFDM Systems

  • Kim, Kyung-Hwa;Seo, Bangwon
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.783-790
    • /
    • 2014
  • In this paper, we first analyze carrier-to-interference ratio performance of the space-frequency block coded orthogonal frequency-division multiplexing (SFBC-OFDM) system in the presence of phase noise (PHN) and residual carrier frequency offset (RCFO). From the analysis, we observe that conventional SFBC-OFDM systems suffer severely in the presence of PHN and RCFO. Therefore, we propose a new inter-carrier interference (ICI) self-cancellation method - namely, ISC - for SFBC-OFDM systems to reduce the ICI caused by PHN and RCFO. Through the simulation results, we show that the proposed scheme compensates the ICI caused by PHN and RCFO in Alamouti SFBC-OFDM systems and has a better performance than conventional schemes.