• Title/Summary/Keyword: Carrier Frequency Offset (CFO) Estimation

Search Result 21, Processing Time 0.02 seconds

Efficient Estimation and Compensation of CFO and STO in Multi-carrier Communication System (다중 반송파 통신 시스템에서 효과적인 CFO와 STO추정 및 보상방법)

  • Lee, Hui-Kyu;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5A
    • /
    • pp.441-449
    • /
    • 2011
  • Sample timing offset (STO) and carrier frequency offset (CFO) are caused by inter-symbol interference (ISI), inter-carrier interference (ICI) and phase error in orthogonal frequency division multiplexing (OFDM) system. OFDM characteristic is sensitive about STO and CFO. So when ICI occurs, compensation is hard and complex equalizer is needed. In this paper, we propose an effective correction method using feedback process with pilot and synchronization symbol. After feedback with estimated value in frequency domain, STO and CFO are corrected by control sample & and holder and oscillator. As a result of simulation, we confirm that STO and CFO can be corrected without equalizer through feedback.

Low-complexity Carrier Frequency Offset Estimation using A Novel Region Boundary for OFDM-based WLAN Systems (영역 경계 기법을 사용한 OFDM기반 WLAN 시스템의 반송파 주파수 오프셋 추정 기법)

  • Cho, Jong-Min;Kim, Jin-Sang;Cho, Won-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3A
    • /
    • pp.254-259
    • /
    • 2010
  • In this paper, we propose a low-complexity carrier frequency offset (CFO) estimation algorithm for OFDM based wireless LAN, IEEE 802.11a. The complexity of the arctangent operation to calculate the argument of auto-correlation for CFO estimation is reduced by a novel range pointer method. The proposed algorithm estimates fine CFO value first and then based on the fine CFO value, simple criteria is used for the boundary decision of integer CFO estimation. The simulation results show that the performance of the proposed algorithm is slightly better than the conventional method while the computational complexity is reduced by 50%. Furthermore, the proposed method can be easily implemented for the low complex next generation MIMO-OFDM based WLAN systems.

Carrier Frequency Offset and 2-D AoA Estimation Method for an OFDM-based Mobile Relay Station with Uniform Circular Array (등간격 원형 어레이를 갖는 OFDM 기반의 이동 릴레이를 위한 반송파 주파수 옵셋 및 2-D 입사각 추정 기법)

  • Ko, Yo-Han;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5A
    • /
    • pp.423-431
    • /
    • 2011
  • In this paper, carrier frequency offset and 2-D AoA (Angle-of-Arrival) estimation methods are proposed for an OFDM-based MRS (Mobile Relay Station) with UCA (Uniform Circular Array). The proposed methods are performed by using the preamble symbol in downlink and can improve the performance of CFO estimation significantly, compared with the conventional method. The proposed methods can be divided into two methods (method 1 and method 2) depending on the order of the AoA estimation and CFO estimation. It is shown by computer simulation under Mobile WiMAX environments that the proposed methods can estimate the CFOs and AoAs of adjacent BSs effectively.

A Carrier Frequency Offset Estimation Algorithm for IEEE802.11n system (IEEE802.11n 시스템에 적용가능한 반송파 주파수 옵셋 추정 알고리즘)

  • Jung, Hyeok-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.5
    • /
    • pp.21-29
    • /
    • 2008
  • This paper proposes a carrier frequency of set estimation algorithm for IEEE802.11n system. As IEEE802.11n is a multiple input multiple output(MIMO) system, so there are several combining techniques which are used in multiple receive antenna system. In this paper, we propose hybrid carrier frequency offset estimation algorithms using combining techniques in multiple receive antenna systems, and show that the proposed selection combining carrier frequency offset (CFO) estimation algorithm can estimate carrier frequency offset within 1/10 MSE error at SNR 10 dB in channel B and within 1/2 MSE error at SNR 10 dB in channel D rather than the conventional MIMO CFO one.

A New Techniques for Estimation of Carrier Frequency Offset in MIMO OFDM Systems (다중 입출력 직교 주파수 분할 다중화 시스템에서의 반송파 주파수 오프셋 추정을 위한 새로운 기법)

  • Altaha, Mustafa;Hwang, Humor
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.949-954
    • /
    • 2017
  • Multiple input, multiple output orthogonal frequency division multiplexing (MIMO OFDM) systems are the candidate for the future wireless communications. However, the main drawback of MIMO OFDM systems is their sensitivity to carrier frequency offset (CFO) similar to the single input, single output OFDM (SISO OFDM) systems. The demodulation of a signal with CFO causes large bit error rate and degrade the performance of a symbol synchronizer. It is important to estimate the frequency offset and minimize or eliminate its impact. In this paper, we propose a technique based on observation training symbols for estimating CFO by employing block-by-block estimation for SISO OFDM systems. The technique of SISO OFDM is extended to the MIMO OFDM systems. Simulation results show that the proposed techniques have a superior performance and better accuracy compared to the conventional techniques in the sense of mean square error.

Robust Pilot-aided Frequency Offset Estimation Scheme for OFDM-based Broadcasting System with Cyclic Delay Diversity

  • Shin, Won-Jae;You, Young-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3055-3070
    • /
    • 2013
  • This paper proposes an improved carrier frequency offset (CFO) and sampling frequency offset (SFO) estimation scheme for orthogonal frequency division multiplexing (OFDM) based broadcasting system with cyclic delay diversity (CDD) antenna. By exploiting a periodic nature of channel transfer function, cyclic delay and pilot pattern with a maximum channel power are carefully chosen, which helps to enable a robust estimation of CFO and SFO against the frequency selectivity of the channel. As a performance measure, a closed-form expression for the achievable mean square error of the proposed scheme is derived and is verified through simulations using the parameters of the digital radio mondiale standard. The comparison results show that the proposed frequency estimator is shown to benefit from properly selected delay parameter and pilot pattern, with a performance better than the existing estimator.

Integer Frequency Offset Estimation using PN Sequence within Training Symbol for OFDM System (PN 시퀀스의 위상추적을 통한 Orthogonal Frequency Division Multiplexing 신호의 정수배 주파수 옵셋 추정)

  • Ock, Youn Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.290-297
    • /
    • 2014
  • The synchronization of OFDM receiver is consisted of symbol timing offset(STO) estimation in time domain and carrier frequency offset(CFO) estimation in frequency domain. This paper proposes new algorithm for correcting the integer CFO after we have done correcting the STO and partial CFO. ICFO must be corrected, since the ICFO lead to degrade bit error rate(BER) of demodulation performance. The PN sequence has information which is subcarrier order since the modified PN sequence, length is same subcarrier, is used in this paper and is modulated each subcarrier by each chip. Thus the receiver track phase of PN sequence after FFTin order to find the subcarrier frequency offset. The proposed algorithm is faster and more simple than convenient methode as measuring carrier energy.

Carrier Frequency Offset Estimation Method for Single-Carrier MIMO Systems (단일 반송파 MIMO 시스템 기반의 PN 부호열을 이용한 반송파 주파수 오차 추정 기법)

  • Oh, Jong-Kyu;Kim, Joon-Tae
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.864-875
    • /
    • 2012
  • In this paper, we propose a carrier frequency offset estimation method for single-carrier MIMO systems. In the proposed method, phase rotated PN (Pseudo-Noise) sequences are transmitted to prevent a cancelling out of partial PN sequences. After removing a modulation of received PN sequences by multiplying of complex conjugated PN Sequences which are locally generated in receiver, a CFO (Carrier Frequency Offset) is accurately estimated by employing L&R method which is a kind of ML (Maximum Likelihood) estimation algorithm and uses multiple auto-correlatos. In addition, the frequency offset estimation scheme by using channel state information is proposed for accurate CFO estimation in time-varying Rayleigh channel. By performing computer simulations, MSE (Mean Square Error) performance of proposed method is almost same as MSE performance of SISO systems in AWGN channel. Moreover, MSE Performance of proposed method with using channel information is higher than MSE performances of SISO system and conventional method in time-varying Rayleigh channel.

A frequency offset estimation and compensation algorithm for high speed modem (고속 광대역 모뎀의 주파수 오프셋 추정 및 보상 알고리즘)

  • Kim, Do-Hoon;Cho, Jin-Woong;Lee, Chung-Yong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.225-227
    • /
    • 2010
  • 본 논문은 OFDM 방식의 고속 광대역 모뎀의 주파수 오프셋을 추정하고 보상하는 알고리즘에 관한 것이다. 설계된 주파수 오프셋 추정 및 보상 알고리즘은 프리앰블 구간에서 초기 CFO(carrier frequency offset)를 추정 및 보상하고, 데이터 전송구간에도 잔류 CFO를 추정하고 보상하도록 동작한다. 초기 CFO보상은 시간축에서 동작하고, 잔류 CFO 보상은 FEQ 뒤에서 파일럿 캐리어의 정보를 이용하여 이루어진다. 잔류 주파수 오프셋을 보상할 때에는 ADC/DAC의 SFO(sampling frequency offset)도 추정하여 잔류 CFO와 동시에 보상하게 된다.

  • PDF

Robust CFO Acquisition in PN-Padded OFDM Systems

  • Liu, Guanghui;Zeng, Liaoyuan;Li, Hongliang;Xu, Linfeng;Wang, Zhengning
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.706-709
    • /
    • 2013
  • As an alternative to the traditional pilot-aided orthogonal frequency division multiplexing (OFDM), the time-domain pseudonoise (PN)-padded OFDM provides a higher spectral efficiency. However, the carrier frequency offset (CFO) attenuates peaks of the conventional PN correlation output, which limits the CFO estimation range of the OFDM synchronizer. An improved correlation is proposed in this letter to remove the CFO-induced amplitude attenuation of correlation peaks. For a synchronizer adopting the designed correlator, a larger range of CFO acquisition is obtained through using wider correlation windows with a smaller interval between them. The proposed method of CFO acquisition is verified in a digital terrestrial multimedia broadcast receiver, in which the synchronizer is able to acquire CFOs up to ${\pm}320$ kHz in the DVB-T F1 channel. Furthermore, the acquisition range can be expanded in more favorable channels.