• Title/Summary/Keyword: Carotenoid

Search Result 646, Processing Time 0.035 seconds

Effect of Halophilic Bacterium, Haloarcula vallismortis, Extract on UV-induced Skin Change (호염 미생물(Haloarcula vallismortis) 용해물의 자외선유발 피부변화에 대한 효과)

  • Kim, Ji Hyung;Shin, Jae Young;Hwang, Seung Jin;Kim, Yun Sun;Kim, Yoo Mi;Gil, So Yeon;Jin, Mu Hyun;Lee, Sang Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.341-350
    • /
    • 2015
  • Skin carrys out protective role against harmful outer environment assaults including ultraviolet radiation, heavy metals and oxides. Especially, ultraviolet-B (UVB) light causes inflammatory reactions in skin such as sun burn and erythma and stimulates melanin pigmentation. Furthermore, the influx of UVB into skin cells causes DNA damage in keratinocytes and dermal fibroblasts, inhibition of extracellular matrix (ECM) synthesis which leads to a decrease in elasticity of skin and wrinkle formation. It also damages dermal connective tissue and disrupts the skin barrier function. Prolonged exposure of human skin to UVB light is well known to trigger severe skin lesions such as cell death and carcinogenesis. Haloarcula vallismortis is a halophilic microorganism isolated from the Dead Sea, Its growth characteristics have not been studied in detail yet. It generally grows at salinity more than 10%, but the actual growth salinity usually ranges between 20 to 25%. Because H. vallismortis is found mainly in saltern or salt lakes, there could exist defense mechanisms against strong sunlight. One of them is generation of additional ATP using halorhodopsin which absorbs photons and produces energy by potential difference formed by opening the chloride ion channel. It often shows a color of pink or red because of their high content of carotenoid pigments and it is considered to act as a defense mechanism against intense UV irradiation. In this study, the anti-inflammatory effect of the halophilic microorganism, H. vallismortis, extract was investigated. It was found that H. vallismortis extract had protective effect on DNA damage induced by UV irradiation. These results suggest that the extract of halophilic bacterium, H. vallismortis could be used as a bio-sunscreen or natural sunscreen which ameliorate the harmful effects of UV light with its anti-inflammatory and DNA protective properties.

Changes of Leaf Characteristics, Pigment Content and Photosynthesis of Forsythia saxatilis under Two Different Light Intensities (광량 차이에 의한 산개나리의 엽 특성과 광색소 함량 및 광합성 변화)

  • Han, Sim-Hee;Kim, Du-Hyun;Kim, Gil Nam;Byun, Jae-Kyung
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.609-615
    • /
    • 2011
  • Forsythia saxatilis is a Korean endemic plant designated as rare and endangered by the Korea Forest Service (KFS). Growth and physiological characteristics of F. saxatilis were investigated under two different light intensities in order to figure out an appropriate growth environment for conservation and restoration of the species in its natural habitat. Shoot length, leaf size and weight, photosynthetic pigment content and photosynthetic parameters were measured for F. saxatilis grown at two experimental plots under relative light intensities (RLI) of 20% and 60% of the full sun, respectively. Fresh leaf weight of plants grown under high relative light intensities (RLI-60) exceeded that of plants grown at 20% RLI. The ratio of fresh leaf weight to leaf size at RLI-60 was 1.47 times superior comparing to that recorded at RLI-20. The content of photosynthetic pigments such as chlorophyll a, b and carotenoid were higher in plants grown at RLI-60, whereas the ratio of total chlorophyll to carotenoid content was higher in the leaves at RLI-20. Photosynthetic rate, stomatal conductance and transpiration rate at RLI-60 were, respectively, 2.5, 2.65 and 1.79 times higher comparing to those recorded at RLI-20. Water use efficiency, however, was higher at RLI-20. The chlorophyll/nitrogen ratio was 1.83 times higher at RLI-20 than at RLI-60. In contrast, the ratio of net photosynthesis to chlorophyll content at RLI-60 was 2.58 times higher than that of RLI-20. In conclusion, light intensity might be the major factor affecting growth and physiological characteristics of F. saxatilis grown under canopy of tall tree species.

Shading Effects on the Growth and Physiological Characteristics of Osmanthus insularis Seedlings, a Rare Species (희귀 식물 박달목서 유묘의 생장 및 생리적 특성에 대한 차광 효과)

  • Da-Eun Gu;Sim-Hee Han;Eun-Young Yim;Jin Kim;Ja-Jung Ku
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.88-96
    • /
    • 2024
  • This study was conducted to determine the optimal light conditions for the in situ and ex situ conservation and restoration of Osmanthus insularis, a rare plant species in South Korea. Evaluations included the growth performance, leaf morphological features, photosynthetic characteristics, and photosynthetic pigment contents of seedlings grown from April to November under different light conditions (100%, 55%, 20%, and 10% relative light intensity). The shoot lengths and root collar diameters did not differ significantly with relative light intensity. The dry weights of leaves, stems, and roots and the leaf number were highest at 55% relative light intensity. The leaf shape showed morphological acclimation to light intensity, with leaf area decreasing and thickness increasing as the relative light intensity increased. Several leaf parameters, including photosynthetic rate and stomatal conductance at light saturation point, net apparent quantum yield, and dark respiration, as well as chlorophyll a, chlorophyll b, and carotenoid contents, were all highest at 55% relative light intensity. Under full light conditions, the leaves were the smallest and thickest, but the chlorophyll content was lower than at 55% relative light intensity, resulting in lower photosynthetic ability. Plants grown at 10% and 20% relative light intensity showed lower chlorophyll a, chlorophyll b, and carotenoid contents, as well as decreased photosynthetic and dark respiration rates. In conclusion, O. insularis seedlings exhibited morphological adaptations in response to light intensity; however, no physiological responses indicating enhanced photosynthetic efficiency in shade were evident. The most favorable light condition for vigorous photosynthesis and maximum biomass production in O. insularis seedlings appeared to be 55% relative light intensity. Therefore, shading to approximately 55% of full light is suggested for the growth of O. insularis seedlings.

Comparison of Dietary Carotenoids Metabolism and Effects to Improve the Body Color of Cultured Fresh-water Fishes and Marine Fishes (양식 담수어 및 해산어의 사료 Carotenoids 대사의 비교와 체색개선에 미치는 영향)

  • Ha, Bong-Seuk;Kweon, Moon-Jeong;Park, Mi-Yeon;Baek, Sung-Han;Kim, Soo-Young;Baek, In-Ok;Kang, Seok-Joong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.270-284
    • /
    • 1997
  • Effects of dietary carotenoids were investigated on the metaboβsm and body pigmentation of rainbow trout(Salmo gairdneri), masu salmon(Oncorhynchus macrostomos), eel(Anguilla japonica), rock fish(Sebastes inermis) and black rock fish(Sebastes schlegeli). Three weeks later after depletion, these fishes were fed diet supplemented with ${\beta}-carotene$, lutein, canthaxanthin', astaxanthin or ${\beta}-apo-8'-carotenal$ for 4 to 5 weeks, respectively. Carotenoids distributed to and changed in integument were analyzed. In the integument of rainbow trout. zeaxanthin, ${\beta}-carotene$ and canthaxanthin were found to be the major carotenoids, while lutein, isocryptoxanthin and salmoxanthin were the minor carotenoids. In the integument of masu salmon, zeaxanthin was found to be the major carotenoids, while triol, lutein, tunaxanthin, ${\beta}-carotene$, ${\beta}-cryptoxanthin$ and canthaxanthin were the minor carotenoids. In the integument of eel, ${\beta}-carotene$ was found to be the major carotenoids, while lutein, zeaxanthin and ${\beta}-cryptoxanthin$ were the minor carotenoids. In the integument of rock fish, zeaxanthin, ${\beta}-carotene$, tunaxanthin$(A{\sim}C)$ and lutein were found to be the major carotenoids, while ${\beta}-cryptoxanthin$, ${\alpha}-cryptoxanthin$ and astaxanthin were the minor carotenoids. Likely in the integument of black rock fish, ${\beta}-carotene$, astaxanthin and zeaxanthin were found to be the major carotenoids, whereas ${\alpha}-cryptoxanthin$, ${\beta}-cryptoxanthin$, lutein and canthaxanthin were the minor contributor. The efficacy of body pigmentation by the accumulation of carotenoids in the integument of rainbow trout and masu salmon were the most effectively shown in the canthaxanthin group and of eel, rock fish and black rock fish were the most effectively shown in the lutein group. Based on these results in the integument of each fish, dietary carotenoids were presumably biotransformed via oxidative and reductive pathways. In the rainbow trout, ${\beta}-carotene$ was oxidized to astaxanthin via successively isocryptoxanthin, echinenone and canthaxanthin. Lutein was oxidized to canthaxanthin. Canthaxanthin was reduced to ${\beta}-carotene$ via isozeaxanthin, and astaxanthin was reduced to zeaxanthin via triol. In the masu salmon, ${\beta}-carotene$ was oxidized to zeaxanthin. Lutein was reduced to zeaxanthin via tunaxanthin. Canthaxanthin was reduced to zeaxanthin via ${\beta}-carotene$. and astaxanthin was reduced to zeaxanthin via triol. In the eel, ${\beta}-carotene$ and lutein were directly deposited but canthaxanthin was reduced to ${\beta}-carotene$, and cholesterol lowering effect by Meju supplementation might be resulted from the modulation of fecal axanthin, astaxanthin and ${\beta}-apo-8'-carotenal$ were oxidized and reduced to tunaxanthin via zeaxanthin. In the black roch fish, ${\beta}-carotene$ was oxidized to ${\beta}-cryptoxanthin$. Lutein was reduced to ${\beta}-carotene$ via ${\alpha}-cryptoxanthin$. Canthaxanthin was reduced to ${\alpha}-cryptoxanthin$ via successively ${\beta}-cryptoxanthin$ and zeaxanthin. Astaxanthin converted to tunaxanthin via isocryptoxanthin and zeaxanthin, and ${\beta}-apo-8'-carotenal$ was reduced to ${\alpha}-cryptoxanthin$ via ${\beta}-cryptoxanthin$ and zeaxanthin.

  • PDF

Analysis of Cellular Components of Starch-Utilizing Yeast Sporobolomyces holsaticus (전분이용성 효모 Sporobolomyces holsaticus의 균체성분 분석에 대하여)

  • Park, Wan-Soo;Koo, Young-Jo;Shin, Dong-Hwa;Suh, Kee-Bong
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.170-176
    • /
    • 1983
  • Starchy single cell protein produced by a starch-utilizing yeast, Sporobolomyces holsaticus FRI Y-5 was analyzed for its composition such as intracellular protein, amino acids, fatty acids, minerals, vitamins and pigments. It was shown that it contained 33.08% of total carbohydrate, 45.63% of crude protein, 20.01% of crude lipid, 3.24% of ash and 4.46% of pigment. Whole cell extracted by cold and hot NaOH method contained 40.89% of soluble protein and the estimated nucleic acid content from crude and soluble protein contents was about 7.6%. The sulphur-containing amino acids, threonine, isoleucine and valine were analyzed to be the limiting amino acids in the starchy SCP, and the protein score was calculated as 89.4. It was shown from its fatty acid analysis that it contained $6.5%\;of\;C_{16:0}$, $2.4%\;of\;C_{18:0}$, $81.9%\;of\;C_{18:1}$, $3.2%\;of\;C_{18:2}$, and $6.0%\;of\;C_{18:3}$. Also it was observed that it contained, per 100 g of dry cell, 365.33mg of Mg and 282.75mg of K more than Fe and Ca. The content of Vit. $B_2$ was 3.7mg per 100 g of dry cell, but niacin was not detected under this experimental condition. The UV-visible scanning result of pigment extract showed that the yeast contained carotenoid and unknown pigments.

  • PDF

Comparison of Antioxidant Activities of Extruded Rice with Vegetables by Cold and Conventional Extrusion (저온 및 재래식 공정에 따른 쌀·야채류 압출성형물의 항산화 활성 비교)

  • An, Sang-Hee;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.8
    • /
    • pp.1212-1218
    • /
    • 2015
  • The study was designed to investigate the effects of cold and conventional extrusion on antioxidant properties of extruded rice with vegetables. Moisture content and screw speed were fixed at 25% and 150 rpm. Cold extrusion and conventional extrusion were adjusted at die temperature of $80^{\circ}C$ with a $CO_2$ injection rate of 300 mL/min and $140^{\circ}C$ without a $CO_2$ injection, respectively. Pumpkin, tomato, strawberry, and green tea powder of 10% were individually blended with rice flour. 1,1-Diphenyl-2-picrylhydrazyl radical-scavenging activity of extruded pumpkin and tomato mix by conventional extrusion was higher than that by cold extrusion. Total phenolic content in extruded pumpkin, tomato, and strawberry mix by cold extrusion was higher than that by conventional extrusion. Total flavonoid content was highest (18.82 mg/g) in extruded green tea by conventional extrusion. Total carotenoid content decreased in extruded pumpkin but increased in extruded tomato. Tomato extrudates with cold extrusion had higher lycopene content than conventional extrusion. Anthocyanin content of conventional extruded strawberry was higher than that of cold extrudates. Total chlorophyll contents decreased through the extrusion process.

Physical Characteristics and Changes in Functional Components of Gochujang with Different Amounts of Sweet Persimmon Powder (단감 분말의 첨가비율을 달리한 고추장의 물리적 특성 및 기능성 성분 변화)

  • Hwang, Su-Jung;Kim, Jeong-Yeon;Eun, Jong-Bang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.12
    • /
    • pp.1668-1674
    • /
    • 2011
  • We investigated the physical characteristics and changes in the functional components of red pepper paste, or gochujang, during fermentation at $20^{\circ}C$ for 90 days with different amounts of sweet persimmon powder. The viscosity of the paste decreased a little with increasing fermentation time. There was no significant difference (p<0.05) in all the treatments during fermentation. The L value, a value, and b value showed a tendency to gradually decrease with increasing fermentation time. And the samples with sweet persimmon powder showed a lower values compared to the control during fermentation. The phenolic compound content of the paste with sweet persimmon powder ranged from 13.72 mg% to 16.13 mg% at an early stage of fermentation, showing a significantly higher value (p<0.05) when increasing the amount of the powder. The content was in the range of 13.72~16.09 mg% on the 90th day in the final stage of fermentation, showing no significant difference (p<0.05) compared to those content at an initial stage of fermentation. The carotenoid content showed significantly higher values (p<0.05) when increasing the amount of sweet persimmon powder. In conclusion, sweet persimmon powder in the red pepper paste would gives a more functional effect which could be from bioactive components, such as phenolic compounds and carotenoids. But, it did not positively affect the color of the red pepper paste.

Physiological Responses and Phytoextraction Potential of Pinus thunbergii on Cd-contaminated Soil

  • Han, Sim-Hee;Kim, Du-Hyun;Ultra, Venecio U. Jr.;Lee, Jae-Cheon
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.711-719
    • /
    • 2010
  • We investigated physiological responses and phytoextraction ability of Pinus thunbergii in cadmium contaminated soil as part of our efforts in identifying plant materials for the restoration and revegetation of forest soil contaminated by heavy metals. Thirty seedlings (ten per treatment) were assigned to three treatments (control, 0.3 and 0.6 mM $CdSO_4$ solution) at first year experiment. At second year, ten seedlings per treatment treated with Cd during the first year experiment were divided by two groups (no Cd-treated and consecutive Cd-treated group). At first experiment, photosynthetic pigment content, and superoxide dismutase (SOD) and glutathione reductase (GR) activities have significantly reduced by Cd application, and the reduction rate was increased much higher as the rate of Cd application increased. On the other hand, thiol and malondialdehyde (MDA) content were significantly increased at the application of 0.6 mM of Cd. At the second year experiment, a general increase in chlorophyll and carotenoid content was observed with Cd treatment while SOD and GR activities showed a relative reduction compared to the control. Similar to the first year measurement, thiol and MDA contents also increased considerably due to Cd treatment. At harvest, dry matter was significantly reduced by Cd treatment especially at the rate of 0.6 mM Cd, but dry yield of P. thunbergii treated with 0.3 mM Cd was less affected and it was comparable with the control seedling. Cadmium concentration in seedling tissues increased with increasing Cd application rate while Cd uptake was higher in seedlings supplied with 0.3 mM Cd, which could be ascribed to their high dry matter. Overall, our study has demonstrated the unique physiological response of P. thunbergii to Cd-prolonged exposure by showing that the changes in photosynthetic pigment content and antioxidative enzyme activities were dependent on the concentration and duration of treatment. In addition, our results have demonstrated the potential of P. thunbergii to withstand up to 0.3 mM Cd (equivalent to cumulative Cd concentration of 134.4 to 268 mg $kg^{-1}$) without showing growth reduction, hence it might be used for phytoremediation of Cd contaminated areas.

Characterization of Chlorella vulgaris Mutants Producing High Chlorophyll (클로로필 고생산성 Chlorella vulgaris 변이주의 특성 분석)

  • Park, Hyun-Jin;Kim, Ok Ju;Ha, Ji Min;Choi, Tae O;Lee, Jae-Hwa
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.3
    • /
    • pp.275-279
    • /
    • 2015
  • Micro-algae are unicellular photosynthetic organisms and produce pigments such as chlorophyll and carotenoid. Chlorella contains a lot of protein and functional components like lipids, chlorophyll and carotenoids. In this study we induced mutants of Chlorella vulgaris (C. vulgaris) through ultraviolet radiation (UV-B) and selected two mutants by pigment (chlorophyll and carotenoids) content. We named the mutants ‘UBM1-2’, ‘UBM2-57’ and they were cultivated for 21-days. Cell growth, dry cell weight, protein content, lipid and pigments content were measured. The results indicated that the mutants displayed slower cell growth, lower dry cell weight and protein content than the wild type. However, for UBM1-2 the lipid content was 21% higher than the wild type. In addition, the mutants’ chlorophyll content was 37% and 89% higher than the wild type and the carotenoids content was 27% and 70% higher than the wild type, respectively.

Color and Carotenoid Changes During Storage of Dried Red Pepper (건조(乾燥) 고추 저장(貯藏) 중(中)의 변색(變色)에 관(關)한 연구(硏究))

  • Kim, Dong-Youn;Rhee, Chong-Ouk
    • Korean Journal of Food Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.53-58
    • /
    • 1980
  • The effects of water activity, oxygen, light and storage temperature on the color degradation of dried red pepper were investigated during storage. Some packing materials were used for improving the storage life of red pepper by minimizing those factors. The results obtained were summarized as follows: 1. The critical water activity to the capsanthin of red pepper was 0.75. 2. Color degradation of dried red pepper was the most severe by U.V. light among 100 watt infra-red lamp, 15 watt U.V. lamp and 200 watt glow lamp. 3. Effect of light was not significant in the presence of nitrogen, Main factor of color degradation of red pepper in storage appeared spontaneous oxidation by the existence of oxygen. 4. The capsanthin content and the lightness as hunter value in powder type storage of red pepper was higher than that in whole pod type during 3 month's storage. 5. The air and damp-proof packing materials showed better results than polyethylene film packing in capsanthin content and lightness during 3 month's storage.

  • PDF