• 제목/요약/키워드: Carnitine Balance

검색결과 6건 처리시간 0.019초

Effects of Dietary L-Carnitine and Protein Level on Plasma Carnitine, Energy and Carnitine Balance, and Carnitine Biosynthesis of 20 kg Pigs

  • Heo, K.N.;Odle, J.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권11호
    • /
    • pp.1568-1575
    • /
    • 2000
  • Growing pigs (N=25; 18 kg) were used to study effects of L-carnitine and protein intake on plasma carnitine, energy and carnitine balance, and carnitine biosynthesis. Corn-soybean meal basal diets containing low or high protein (13.6% or 18%) were formulated so that protein accretion would be limited by metabolizable energy (ME). Each basal diet was supplemented with 0 or 500 mg/kg L-carnitine and limit fed to pigs for 10 d in a balance trial. Final carnitine concentration was compared with weight/age matched pigs measured on d 0 to calculate carnitine retention rates. Supplementation of carnitine increased (p<0.01) plasma free carnitine (by 250%), short-chain (by 160%) and long-chain acyl-carnitine concentrations (by 80%) irrespective of blood sampling time (p<0.01). The proportion of long-chain carnitine esters decreased by 40% (p<0.01) by carnitine supplementation; whereas, the proportion of short-chain acyl-carnitine concentration was not changed (p>0.10). All criteria of energy balance were unaffected by L-carnitine (p>0.10). Total body carnitine retention was increased by 450% over unsupplemented controls (p<0.01). Carnitine biosynthesis rates in pigs fed diets without L-carnitine were estimated at 6.71 and $10.63{\mu}mol{\cdot}kg^{-1}{\cdot}d^{-1}$ in low protein and high protein groups, respectively. In supplemented pigs, L-carnitine absorption and degradation in the intestinal tract was estimated at 30-40% and 60-70% of L-carnitine intake, respectively. High protein feeding effect did not affected plasma carnitine concentrations, carnitine biosynthesis or carnitine retention (p>0.10). We conclude that endogenous carnitine biosynthesis may be adequate to maintain sufficient tissue levels during growth, but that supplemental dietary carnitine (at 500 ppm) sufficiently increased plasma acyl-carnitine and total body carnitine.

Amino Acid, Amino Acid Metabolite, and GABA Content of Three Domestic Tomato Varieties

  • Ahn, Jun-Bae
    • 한국조리학회지
    • /
    • 제22권6호
    • /
    • pp.71-77
    • /
    • 2016
  • To determine the nutritional value of domestic tomatoes, the levels of amino acids, amino acid metabolites, and the bioactive compound ${\gamma}-aminobutyric-acid$ (GABA) were analyzed in three domestic tomato varieties (Rafito, Momotaro, and Medison). Eighteen free amino acids were found, and total free amino acid content was 3,810.21~4,594.56 mg/100 g (dry weight). L-glutamic acid (L-Glu) was the most abundant amino acid, ranging from 1,866.60 mg/100 g for Momotaro to 2,417.45 mg/100 g for Medison. The next most abundant amino acids were L-glutamine (L-Gln) and L-aspartic acid (L-Asp). The three tomato varieties had a good balance of all the essential amino acids except tryptophan. Total essential amino acid content was 274.26~472.71 mg/100 g (dry weight). The following amino acid metabolites were found: L-carnitine (L-Car), hydroxylysine (Hyl), o-phosphoethanolamine (o-Pea), phosphoserine (p-Ser), ${\beta}-alanine$ (${\beta}-Ala$), N-methyl-histidine (Me-His), ethanolamine (EtNH2),and L-citrulline(L-Cit). Large quantities of GABA were found in all three varieties: 666.95-868.48 mg/100g (dry weight). These results support the use of these tomato varieties as nutritious food materials.

Identification and validation of putative biomarkers by in silico analysis, mRNA expression and oxidative stress indicators for negative energy balance in buffaloes during transition period

  • Savleen Kour;Neelesh Sharma;Praveen Kumar Guttula;Mukesh Kumar Gupta;Marcos Veiga dos Santos;Goran Bacic;Nino Macesic;Anand Kumar Pathak;Young-Ok Son
    • Animal Bioscience
    • /
    • 제37권3호
    • /
    • pp.522-535
    • /
    • 2024
  • Objective: Transition period is considered from 3 weeks prepartum to 3 weeks postpartum, characterized with dramatic events (endocrine, metabolic, and physiological) leading to occurrence of production diseases (negative energy balance/ketosis, milk fever etc). The objectives of our study were to analyze the periodic concentration of serum beta-hydroxy butyric acid (BHBA), glucose and oxidative markers along with identification, and validation of the putative markers of negative energy balance in buffaloes using in-silico and quantitative real time-polymerase chain reaction (qRT-PCR) assay. Methods: Out of 20 potential markers of ketosis identified by in-silico analysis, two were selected and analyzed by qRT-PCR technique (upregulated; acetyl serotonin o-methyl transferase like and down regulated; guanylate cyclase activator 1B). Additional two sets of genes (carnitine palmotyl transferase A; upregulated and Insulin growth factor; downregulated) that have a role of hepatic fatty acid oxidation to maintain energy demands via gluconeogenesis were also validated. Extracted cDNA (complementary deoxyribonucleic acid) from the blood of the buffaloes were used for validation of selected genes via qRTPCR. Concentrations of BHBA, glucose and oxidative stress markers were identified with their respective optimized protocols. Results: The analysis of qRT-PCR gave similar trends as shown by in-silico analysis throughout the transition period. Significant changes (p<0.05) in the levels of BHBA, glucose and oxidative stress markers throughout this period were observed. This study provides validation from in-silico and qRT-PCR assays for potential markers to be used for earliest diagnosis of negative energy balance in buffaloes. Conclusion: Apart from conventional diagnostic methods, this study improves the understanding of putative biomarkers at the molecular level which helps to unfold their role in normal immune function, fat synthesis/metabolism and oxidative stress pathways. Therefore, provides an opportunity to discover more accurate and sensitive diagnostic aids.

복합 캡사이신, 세사인, 그리고 카르니틴과 베타3 유전자 다형에 대한 심박수 변이성의 영향 (Alterations of Heart Rate Variability upon β3-Adrenergic Receptor Polymorphism and Combined Capsaicin, Sesamin, and L-Carnitine in Humans)

  • 신기옥;김현준;강성훈
    • 생명과학회지
    • /
    • 제18권3호
    • /
    • pp.291-297
    • /
    • 2008
  • 본 연구의 목적은 1) 캡사이신(75 mg), 세사민(30 mg), 그리고 카르니틴(900 mg) 복합성분(CCSC)이 에너지 대사조절자로서 열발생 교감신경활동과 관련된 자율신경활동을 향상시키는지, 2) 본 연구의 대상자들의 ${\beta}_3-AR$ 유전자 다양성이 자율신경활동에 영향을 주는지를 조사하였다. 7명의 대상자 ($24.7{\pm}1.8$세)가 이 실험에 자발적으로 참여하였다. 심박수변이성 파워스펙트랄 분석에 의해 평가된 심장 자율신경활동은 CCSC 섭취 전과 후 총 120분간 매 30분마다 5분간 측정하였으며, CCSC 또는 위약 (CON)그룹은 무작위로 대상자에서 섭취되었다. 본 연구의 결과에서, 총 대상자중, ${\beta}_3-AR$ 유전자CC 타입을 가진 대상자는 없었다 . 두 그룹간의 안정시 심박수에서는 유의한 차이가 없었다. 자율신경활동에서도 그룹간 차이는 없었으나, CCSC그룹에서 섭취전과 섭취 후 30분에서 총자율신경활동(TOTAL power), 부교감신경활동(PNS power), 그리고 교감${\cdot}$부교감 신경활동지수에서 유의한 차이를 보였다(p<0.05, respectively). 이상의 결과로서, 비록 각각의 성분들은 지방분해와 관련이 있다 할지라도CCSC의 섭취는 열생산 교감신경 자극에 영향을 주지 않았으며, 오히려 양 교감${\cdot}$부교감신경활동의 향상과 관련이 있다는 것을 시사하였다. 따라서 미래의 연구에서는 ANS 활동에 영향을 주는 유전적 다양성뿐만 아니라 운동능력 향상 보조물 그리고/또는 지방분해 효과를 위한 더 많은 복합 영양 성분이 연구되어야 할 것이다.

국내산 방울토마토의 이화학적 특성 (Physicochemical Properties of Domestic Cherry Tomato Varieties)

  • 안준배
    • 한국조리학회지
    • /
    • 제23권7호
    • /
    • pp.42-49
    • /
    • 2017
  • This study was conducted to determine the nutritional value of domestic cherry tomato varieties (Summerking, Qutiquti, and Minichal). The levels of amino acids, amino acid derivatives, and ${\gamma}-aminobutyric-acid$ (GABA) were analyzed using ion chromatography. In domestic cherry tomatoes, eighteen free amino acids were found including L-glutamic acid (L-Glu), L-glutamine (L-Gln), and L-aspartic acid (L-Asp). L-Glu was the most abundant amino acid, ranging from 1,533.17 mg/100 g to 1,920.65 mg/100 g (dry weight). The next abundant amino acids were L-Gln, ranging from 784.68 mg/100 g to 1,164.36 mg/100 g and L-Asp, ranging from 320.73 mg/100 g to 387.22 mg/100 g. Domestic cherry tomatoes contained eight essential amino acids except tryptophan and the total essential amino acid content was 297.30~432.43 mg/100 g (dry weight), which was 8.92~10.61% of total free amino acid. Several amino acid derivatives were found: L-carnitine (L-Car), hydroxylysine (Hyl), o-phosphoethanolamine (o-Pea), phosphoserine (p-Ser), ${\beta}-alanine$ (${\beta}-Ala$), N-methyl-histidine (Me-His), ethanolamine ($EtNH_2$), and L-citrulline (L-Cit). L-Car, transporting long-chain fatty acid into mitocondrial matrix, was the most abundant amino acid derivative in all domestic cherry tomatoes. A high level of GABA (313.18~638.57 mg/100 g), known as a neurotransmitter, was also found in all three domestic cherry tomatoes. These results revealed that domestic cherry tomatoes have a good balance of nutrient and bioactive compounds. Therefore, cherry tomatoes can be used as a functional food material.

Sour cherry ameliorates hepatic lipid synthesis in high-fat diet-induced obese mice via activation of adenosine monophosphate-activated protein kinase signaling

  • Songhee Ahn;Minseo Kim;Hyun-Sook Kim
    • Journal of Nutrition and Health
    • /
    • 제56권6호
    • /
    • pp.641-654
    • /
    • 2023
  • Purpose: Sour cherry (Prunus cerasus L.) contains abounding phytochemicals, such as polyphenols and anthocyanins, and has antioxidative effects. Adenosine monophosphate-activated protein kinase (AMPK) is a crucial regulator in enhancing the lipid metabolism. This study hypothesized that the intake of sour cherry affects AMPK signaling. Therefore, this study examined whether sour cherry regulates AMPK to balance the hepatic lipid metabolism and exert ameliorating effects. Methods: Male C57BL/6J mice had obesity induced with a 45% fat diet. The mice were divided into four groups: control (CON), high-fat diet (HFD), low percentage sour cherry powder (LSC), and high percentage sour cherry powder (HSC). The mice in the sour cherry groups were fed 1% sour cherry or 5% sour cherry in their respective diets for 12 weeks. Results: The body weight, visceral fat weight, and lipid droplet size significantly decreased in the treatment groups. The serum and hepatic triglyceride and total cholesterol levels improved significantly in the HSC group. The low-density lipoprotein cholesterol levels were also reduced significantly, whereas the high-density lipoprotein cholesterol levels were increased significantly in both treatment groups. The sterol regulator binding protein-1c and fatty acid synthase expression levels as fatty acid synthesis-related enzymes were significantly lower in the treatment groups than in the high-fat diet group. Furthermore, the adipose triglyceride lipase and hormone-sensitive lipase expression levels as lipolytic enzyme activity and AMPK/acetyl-CoA carboxylase/carnitine palmitoyltransferase-1 as fatty acid β-oxidation-related pathway were upregulated significantly in both sour cherry groups. Conclusions: These results show that sour cherry intake improves hepatic lipid synthesis and chronic diseases by activating AMPK signaling. Therefore, this study suggests that phytochemical-rich sour cherry can be developed as a healthy functional food.