• Title/Summary/Keyword: Cargo per unit ship

Search Result 6, Processing Time 0.019 seconds

A Study on the Optimal Combination of Berth and Crane in Container Terminal (컨테이너터미널 사용자비용을 최소로 하는 선석과 크레인의 최적구성에 관한 연구)

  • Yun, Y.C.;Moon, S.H.
    • Journal of Korean Port Research
    • /
    • v.9 no.2
    • /
    • pp.39-49
    • /
    • 1995
  • Recently, the traffic volume has been greatly increased partly because of high growth rate of domestic and world economy, and partly because of increased transhipment demand resulting from the destruction of Kobe port by earthqwake early this year. So, container facilities in Pusan Port are under serious congestion. The congestion costs in connection with container traffic in Pusan Port is estimated to be 29.3 billion won in 1994. In 1995 the situation is still worsening. PECT has continued to grow annually by 35% in cargo handling exceeding more than 31% of the total container volumes handled in Korea. The BOR of container berths in PECT in 1994 is 75% reflecting extreme congestion in container traffic. The reason for such serious congestion in PECT is the shortage of container handling facilities in comparison with ever-increasing cargo traffic. In order to solve the provisional problem, the shortage of handling capacity, a model developed to optimize the operation of PECT is described and demonstrated. The model minimizes total port costs, including the costs of dock labour, facilities and equipment, ship, containers, and cargo. The object of this study is, through the model results, mainly to determine the optimal combination of berths and cranes under various circumstances and to show that total costs per ship or unit of cargo served can be reduced by increasing the number of cranes per berth and berth utilization above present levels. Eventually, the results obtained with this model in PECT suggest that increase to 3 in the number of cranes per existing berth could reduce the need for major investments in berths and even reduce operating costs.

  • PDF

A Study on Expansion of Anchorage according to increased Trading Volume at Pyeongtaek Port (평택항 물동량 증가에 따른 정박지 확장 방안에 관한 연구)

  • Lee, Chang-Hyun;Lee, Hong-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.663-670
    • /
    • 2014
  • The Pyeongtaek port is expected lack of waiting anchorage due to increase of incoming ships whit increasing of trading volume in the near future. In case of an anchorage facility's structural alternations and expansion, it should be considered comprehensively how it affects other anchorage facilities. In addition, the volume of ship traffic to relevant area should be estimated accurately and then the facility's scale is calculated. In this paper, researchers calculated cargo per unit ship with the throughput for every ship and predicted the number of ships which had entered Pyeongtaek port. As a result, the port's ability to be docked was predicted to be not enough in 2030. It will exceed the number of ships able to cast anchor at specific two parts simultaneously 12.6 and 1.6 respectively consequently, the necessity to expand the ports was suggested. Hence, the best expansion plan was examined with analysis of marine transportation environment at each ports and the improvements suggested are anchoring ships at Ippado anchorage is 19.7 and the one at Janganseo anchorage is 12.6.

Analysis of productivity and efficiency for mega container ships: Case of Busan Port (초대형 컨테이너 선박의 생산성 및 효율성 분석 -부산항을 중심으로-)

  • Jong-Hoon Kim;Won-Hyeong Ryu;Shin-Woo Park;Hyung-Sik Nam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.121-122
    • /
    • 2023
  • As containerized maritime transport began in earnest, the size of container ships has steadily increased, and recently, the operation of 24,000 TEU-class vessels has become regular. However, concerns about the efficiency and productivity of such mega container ships from a port operational perspective have continued to be raised. The 10th Busan International Port Conference requested an in-depth study on the trends of container ship enlargement by analyzing the order status of ultra-large container ships from major global liners. Generally, the factor that drives the upsizing of ships is the realization of economies of scale that lowers transportation costs per TEU, which leads to a higher level of cost reduction per unit transportation compared to the increase in fuel consumption due to transporting large amounts of cargo with a single ship. However, it is necessary to examine whether this trend of container vessel enlargement is feasible for port operations. To this end, this study compares and analyzes the productivity and efficeiency of different ship sizes to evaluate the effect of ship size on port operations.

  • PDF

Analysis of productivity and efficiency for mega container ships: Case of Busan Port (부산항 터미널별 선박 규모에 따른 선석 생산성 및 항만 효율성 비교분석)

  • Jong-Hoon Kim;Won-Hyeong Ryu;Shin-Woo Park;Hyung-Sik Nam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.72-73
    • /
    • 2023
  • As containerized maritime transport began in earnest, the size of container ships has steadily increased, and recently, the operation of 24,000 TEU-class vessels has become regular. However, concerns about the efficiency and productivity of such mega container ships from a port operational perspective have continued to be raised. The 10th Busan International Port Conference requested an in-depth study on the trends of container ship enlargement by analyzing the order status of ultra-large container ships from major global liners. Generally, the factor that drives the upsizing of ships is the realization of economies of scale that lowers transportation costs per TEU, which leads to a higher level of cost reduction per unit transportation compared to the increase in fuel consumption due to transporting large amounts of cargo with a single ship. However, it is necessary to examine whether this trend of container vessel enlargement is feasible for port operations. To this end, this study compares and analyzes the productivity and efficeiency of different ship sizes to evaluate the effect of ship size on port operations.

  • PDF

Effect of Terminal Layouts on the Performance of Marine Terminals for Mega-containerships

  • Imai, Akio;Nishimura, Etsuko;Papadimitriou, Stratos
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.165-171
    • /
    • 2006
  • The appearance of over 10,000 TEU containerships (so called Mega-containerships) is determined. In order to operate these ships effectively, the number of these calling ports will diminish, and then feeder ships will transport cargoes from the hub-ports where mega-containerships call to the destination ports. In the hub-ports, handling containers for mega-containerships become huger, thus it is important for terminals to deal with cargo handling as soon as possible. However, the present terminal layout might have the limitation of maximum throughput per time unit. And then the transit time at the ports become longer. Therefore, we investigate the effect on some different terminal layouts with new alternatives. Actually, we discuss the ship-to-berth allocation at some adjacent berths for mega-containerships on three types of terminal layouts. First one is the conventional type consisted by some linear berths, most container terminals in the world are normally this type. Second one is the indented type consisted by linear berths and indented berths which we can handle from both sides of mega-containership simultaneously. Third one is the floating type consisted by linear berths and the floating berth. On this type, mega-containerships can moor between linear and floating berths. The merits of this type are that we can also handle from both sides of mega-containerships simultaneously, and ships can go through between linear berth and floating berths. Thus it is easier for ships to moor and leave berths. Under such assumptions, we examine the numerical experiments. In most cases, the total service times on the indented type are the longest among three types, these on the floating type are the next longer. Those reasons are that these layouts have the differences of berth occupancy obtained by the time and space axes, and whether the precedence constraints of ship service order needs or not.

  • PDF

A Study on the Variation of Physical Properties of Line-heated for Type-B LNG Fuel Tank with 9% Nickel Steel Plate (9% Nickel강이 적용된 Type-B LNG 연료탱크 선상가열의 물성 변화에 관한 연구)

  • Choi, Kyung-Shin;Lee, Ji-Han;Hong, Ji-Ung;Chung, Won-Jee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.89-97
    • /
    • 2020
  • Container vessels continue to grow in size, led by global shipowner. Large ships can be loaded more cargo at a time, reducing the cost of transportation per teu. this eventually leads to economies of sale, in which the production cost per unit decreases with increasing output. in accordance with the 70th Convention of the Marine Environment Protection Committee of the International Maritime Organization, as of January 1, 2020, MARPOL Annex VI Regulation 14.1.3 will be effective. All vessels must be meet these criteria to reduce Sox emissions and reduce NOx emissions by reducing the content of manned sulfur oxides from 3.5% to less than 0.5%, otherwise IACS Member States Entry to the port is denied. in order to do that need to LNG storage tank. in this study characteristic of the material after line heating (600℃,700℃,800℃,900℃) of 9% Ni steel used in the manufacture of LNG fuel tank of ship were verified using by mechanical test. In the heating method by line heating. The initial properties of steel are changed by variables such as temperature, time, speed. The experimental data of line heating presented in this paper confirmed that the initial change of 9% Ni steel could be minimized.