• 제목/요약/키워드: Cardiovascular model

검색결과 587건 처리시간 0.031초

Development of a Risk Scoring Model to Predict Unexpected Conversion to Thoracotomy during Video-Assisted Thoracoscopic Surgery for Lung Cancer

  • Ga Young Yoo;Seung Keun Yoon;Mi Hyoung Moon;Seok Whan Moon;Wonjung Hwang;Kyung Soo Kim
    • Journal of Chest Surgery
    • /
    • 제57권3호
    • /
    • pp.302-311
    • /
    • 2024
  • Background: Unexpected conversion to thoracotomy during planned video-assisted thoracoscopic surgery (VATS) can lead to poor outcomes and comparatively high morbidity. This study was conducted to assess preoperative risk factors associated with unexpected thoracotomy conversion and to develop a risk scoring model for preoperative use, aimed at identifying patients with an elevated risk of conversion. Methods: A retrospective analysis was conducted of 1,506 patients who underwent surgical resection for non-small cell lung cancer. To evaluate the risk factors, univariate analysis and logistic regression were performed. A risk scoring model was established to predict unexpected thoracotomy conversion during VATS of the lung, based on preoperative factors. To validate the model, an additional cohort of 878 patients was analyzed. Results: Among the potentially significant clinical variables, male sex, previous ipsilateral lung surgery, preoperative detection of calcified lymph nodes, and clinical T stage were identified as independent risk factors for unplanned conversion to thoracotomy. A 6-point risk scoring model was developed to predict conversion based on the assessed risk, with patients categorized into 4 groups. The results indicated an area under the receiver operating characteristic curve of 0.747, with a sensitivity of 80.5%, specificity of 56.4%, positive predictive value of 1.8%, and negative predictive value of 91.0%. When applied to the validation cohort, the model exhibited good predictive accuracy. Conclusion: We successfully developed and validated a risk scoring model for preoperative use that can predict the likelihood of unplanned conversion to thoracotomy during VATS of the lung.

Concept Analysis of Health Literacy for Patients with Cardiovascular Disease using Hybrid Model

  • Sim, Jeong Eun;Hwang, Seon Young
    • 지역사회간호학회지
    • /
    • 제30권4호
    • /
    • pp.494-507
    • /
    • 2019
  • Purpose: The purpose of this study is to provide a clear definition of the health literacy for patients with cardiovascular disease by analyzing the dimensions and properties using Hybrid concept analysis. Methods: The concept of health literacy of patients with cardiovascular disease was analyzed according to the cyclic process of theoretical phase-field work phase-final analysis phase presented in the Hybrid model. We reviewed 26 literatures and conducted in-depth interviews with 13 patients with cardiovascular disease. Results: The concept of health literacy in cardiovascular patients is derived from two dimensions and five attributes. Literacy skills, health information search ability and health information utilization skills were derived as attributes in the individual functional dimension, while active communication with the medical team and utilization of health information support resources were derived at the interrelational dimension. It is defined as the individualized and integrated ability of an individual to explore and utilize the various health information needed to make appropriate health decisions during the chronic course after diagnosis of cardiovascular disease, to communicate proactively with medical staffs and to utilize support resources. Conclusion: This study will contribute to the development and related research of health literacy measurement tools that can be used in cardiovascular nursing practice based on the attributes and indicators of health literacy for patients with cardiovascular disease.

혈액투석 중 심혈관계 응답의 수치적 연구 (Simulation Study of Cardiovascular Response to Hemodialysis)

  • 임기무;민병구;고형종;심은보
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1236-1239
    • /
    • 2004
  • The object of this study is to develop a model of the cardiovascular system capable of simulating the short-term transient and steady-state hemodynamic responses such as hypotention and disequilibrium syndrome during hemodialysis or hemofiltration. The model consists of a closed loop 12 lumped-parameter representation of the cardiovascular circulation connected to set-point models of the arterial and cardiopulmonary baroreflexes and 3 compartmental body fluid and solute kinetic model. The hemodialysis model includes the dynamics of sodium, urea, and potassium in the intracellular and extracellular pools, fluid balance equations for the intracellular, interstitial, and plasma volumes. We have presented the results of many different simulations performed by changing a few model parameters with respect to their basal values.

  • PDF

폰탄 수술에서 문합방법에 따른 혈류 변화 (Blood Flow Changes by Anastomotic Method in Fontan Operation)

  • 김상현;박영환;조범구;김종훈;홍유선;김영호;김승수
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 춘계학술대회
    • /
    • pp.203-206
    • /
    • 1996
  • To understand the local fluid dynamics for different desists of Fontan operation, five models were made out of Pyrex glass to facilitate in-vitro study. Model I, II and III have same position of the center of the anastomosis of the IVC( inferior vena cava) with that of the SVC(superior vena cava), but Model IV and V have 10 mm offset between them. Also the anastomotic junction angles are different(Model I and $IV:90^{\circ}$, Model II and $V:70^{\circ}$, Model $III:45^{\circ}$). These models were then connected to a flow loop for flow visualization study. In Model I any dominant vortex was not seen in the central region of the juntion, but a large unstable vortex was created in the Model II and III. In Model IV and V a significant stagnation region was created in the middle of the offset region. It also showed that the flow direction from the IVC and SVC to the LPA(left pulmonary artery) and RPA(right pulmonary artery) highly depends on the offset of the junction rather than the anastomotic junction angle.

  • PDF

공기압력모델에 기반한 혈류 시뮬레이터의 동적 특성 평가 (Dynamic Performance Evaluation of Blood Flow Simulator Based on Windkessel Models)

  • 전세종;진종한
    • 한국정밀공학회지
    • /
    • 제33권6호
    • /
    • pp.509-516
    • /
    • 2016
  • A blood flow simulator is one of the experimental devices used to better understand the cardiovascular system. Time-Domain analysis is not sufficient to understand the cardiovascular system because of the effects related to pulsating flows. Even when the mean pressure and mean flow rate of the blood flow simulators are satisfied, the dynamic properties can differ from the desired performance. In this paper, the Windkessel model, a well-known mathematical model of the cardiovascular system, was employed to obtain optimized pressure using initial values. The Windkessel parameters, including flow resistance, R, are expected to lead to a better understanding of the dynamic behavior of cardiovascular systems.

인체 심혈관계의 이론적 분석을 위한 시스템 시뮬레이션모델에 관한 연구 (Systemic Simulation Models for the Theoretical Analysis of Human Cardiovascular System)

  • 고형종;윤찬현;심은보
    • 제어로봇시스템학회논문지
    • /
    • 제10권12호
    • /
    • pp.1181-1188
    • /
    • 2004
  • This paper reviews the main aspects of cardiovascular system dynamics with emphasis on modeling hemodynamic characteristics using a lumped parameter approach. Methodological and physiological aspects of the circulation dynamics are summarized with the help of existing mathematical models: The main characteristics of the hemodynamic elements, such as the heart and arterial and venous systems, are first described. Lumped models of micro-circulation and pulmonary circulation are introduced. We also discuss the feedback control of cardiovascular system. The control pathways that participate in feedback mechanisms (baroreceptors and cardiopulmonary receptors) are described to explain the interaction between hemodynamics and autonomic nerve control in the circulation. Based on a set-point model, the computational aspects of reflex control are explained. In final chapter we present the present research trend in this field and discuss the future studies of cardiovascular system modeling.

급성 동정맥루를 포함하는 인체 심혈관계의 혈류역학적 거동에 관한 수치 해석적 연구 (Computational Study on the Hemodynamic Behaviors of the Human Cardiovascular System with an Acute Arteriovenous Fistula)

  • 변수영;손정락;심은보;노승탁
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권4호
    • /
    • pp.329-337
    • /
    • 2003
  • 선천적 혹은 후천적인 이유로 인하여 인체 특정 부위의 정맥과 동맥이 서로 관통하여 동맥계의 혈류가 말초 혈관계를 우회하여 정맥계로 흐르게 되는 동정맥루는 인체 심혈관계의 혈류 역학적 거동에 큰 영향을 미치게 된다. 본 연구에서는 lumped parameter 모델을 기반으로 하는 수치 해석 방법을 사용하여 우측 하지에 위치한 급성 동정맥루가 전체 심혈관계에 미치는 영향을 해석적으로 고찰하였다. 이를 위하여 동정맥루가 포함된 인체 심혈관계를 전기 회로 상사계로 구성하였으며. 부위별 혈압과 관련된 상미분 연립 방정식을 4차의 Runge-Kutta방법으로 풀어서 시간에 따른 혈류 역학적 변수들을 구하였다 이때 급성 동정맥루의 생성에 따른 혈류 역학적 보상작용을 분석하기 위하여 arterial baroreflex 제어계를 모델에 포함하였다.

Toward a grey box approach for cardiovascular physiome

  • Hwang, Minki;Leem, Chae Hun;Shim, Eun Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권5호
    • /
    • pp.305-310
    • /
    • 2019
  • The physiomic approach is now widely used in the diagnosis of cardiovascular diseases. There are two possible methods for cardiovascular physiome: the traditional mathematical model and the machine learning (ML) algorithm. ML is used in almost every area of society for various tasks formerly performed by humans. Specifically, various ML techniques in cardiovascular medicine are being developed and improved at unprecedented speed. The benefits of using ML for various tasks is that the inner working mechanism of the system does not need to be known, which can prove convenient in situations where determining the inner workings of the system can be difficult. The computation speed is also often higher than that of the traditional mathematical models. The limitations with ML are that it inherently leads to an approximation, and special care must be taken in cases where a high accuracy is required. Traditional mathematical models are, however, constructed based on underlying laws either proven or assumed. The results from the mathematical models are accurate as long as the model is. Combining the advantages of both the mathematical models and ML would increase both the accuracy and efficiency of the simulation for many problems. In this review, examples of cardiovascular physiome where approaches of mathematical modeling and ML can be combined are introduced.

Circulating Tumor Cell Detection in Lung Cancer Animal Model

  • Chong, Yooyoung;Jung, Yong Chae;Hwang, Euidoo;Cho, Hyun Jin;Kang, Min-Woong;Na, Myung Hoon
    • Journal of Chest Surgery
    • /
    • 제54권6호
    • /
    • pp.460-465
    • /
    • 2021
  • Background: Metastasis and recurrence of primary cancer are the main causes of cancer mortality. Disseminated tumor cells refer to cancer cells that cause metastasis from primary cancer to other organs. Several recent studies have suggested that circulating tumor cells (CTCs) are associated with the clinical stage, cancer recurrence, cancer metastasis, and prognosis. There are several methods of isolating CTCs from whole blood; in particular, using a membrane filtration system is advantageous due to its cost-effectiveness and availability in clinical settings. In this study, an animal model of lung cancer was established in nude mice using the human large cell lung cancer cell line H460. Methods: Six-week-old nude mice were used. The H460 lung cancer cell line was injected subcutaneously into the nude mice. Blood samples were obtained from the orbital area before cell line injection, 2 weeks after injection, and 2 weeks after tumor excision. Blood samples were filtered using a polycarbonate 12-well Transwell membrane (Corning Inc., Corning, NY, USA). An indirect immunofluorescence assay was performed with the epithelial cell adhesion molecule antibody. The number of stained cells was counted using fluorescence microscopy. Results: The average size of the tumor masses was 35.83 mm. The stained cells were counted before inoculation, 2 weeks after inoculation, and 2 weeks after tumor excision. Cancer cells generally increased after inoculation and decreased after tumor resection. Conclusion: The CTC detection method using the commercial polycarbonate 12-well Transwell (Corning Inc.) membrane is advantageous in terms of cost-effectiveness and convenience.