• 제목/요약/키워드: Cardiac Myocytes

검색결과 79건 처리시간 0.025초

Modeling the Cardiac Na+/H+ Exchanger Based on Major Experimental Findings

  • Cha, Chae Young;Noma, Akinori
    • Molecules and Cells
    • /
    • 제28권2호
    • /
    • pp.81-85
    • /
    • 2009
  • $Na^+-H^+$ exchanger (NHE) is the main acid extruder in cardiac myocytes. We review the experimental findings of ion-dependency of NHE activity, and the mathematical modeling developed so far. In spite of extensive investigation, many unsolved questions still remain. We consider that the precise description of NHE activity with mathematical models elucidates the roles of NHE in maintaining ionic homeostasis, especially under pathophysiological conditions.

miR-374 promotes myocardial hypertrophy by negatively regulating vascular endothelial growth factor receptor-1 signaling

  • Lee, Jong Sub;Song, Dong Woo;Park, Jei Hyoung;Kim, Jin Ock;Cho, Chunghee;Kim, Do Han
    • BMB Reports
    • /
    • 제50권4호
    • /
    • pp.208-213
    • /
    • 2017
  • Vascular endothelial growth factor (VEGF) is an essential cytokine that has functions in the formation of new blood vessels and regression of cardiac hypertrophy. VEGF/VEGF-receptor-1 (VEGFR1) signaling plays a key role in the regression of cardiac hypertrophy, whereas VEGF/VEGFR2 signaling leads to cardiac hypertrophy. In this study, we identified the prohypertrophic role of miR-374 using neonatal rat ventricular myocytes (NRVMs). Our results showed that overexpression of miR-374 activated G protein-coupled receptor-mediated prohypertrophic pathways by the inhibition of VEGFR1-dependent regression pathways. Luciferase assays revealed that miR-374 could directly target the 3'-untranslated regions of VEGFR1 and cGMP-dependent protein kinase-1. Collectively, these findings demonstrated that miR-374 was a novel pro-hypertrophic microRNA functioning to suppress the VEGFR1-mediated regression pathway.

Murrayafoline-A에 의한 심실 근육세포 $Ca^{2+}$ 스파크 발생의 증가 (Enhancement of $Ca^{2+}$ Spark Occurrence by Murrayafoline-A in Rat Ventricular Myocytes)

  • 김준철;뉘엔 만 콩;우선희
    • 약학회지
    • /
    • 제58권4호
    • /
    • pp.245-249
    • /
    • 2014
  • Murrayafoline-A (1-methoxy-3-methylcarbazole) is a monomeric carbazole alkaloid found in Murraya euchrestifolia HAYATA and Glycosmis stenocarpa. We have recently shown that murrayafoline-A has positive inotropic effect in isolated rat ventricular myocytes. To know possible mechanisms for the positive inotropic effect of murrayafoline-A we examined the effects of murrayafoline-A on in situ behavior of cardiac $Ca^{2+}$ release units ('$Ca^{2+}$ sparks') and sarcoplasmic reticulum (SR) $Ca^{2+}$ loading using confocal $Ca^{2+}$ imaging method in single rat ventricular myocytes. Murrayafoline-A significantly increased the frequency (events/($10^3{\mu}m^2{\cdot}s$)) of $Ca^{2+}$ sparks in a concentration-dependent manner, with an $EC_{50}$ of $28{\pm}6.4{\mu}M$ and a maximal ~twofold change. The $Ca^{2+}$ content in the SR, measured as caffeine (10 mM)-induced $Ca^{2+}$ transient, was significantly increased by murrayafoline-A (${\approx}$116% and ${\approx}$123% of control at 25 and 100 ${\mu}M$, respectively). In addition, murrayafoline-A significantly increased the fractional $Ca^{2+}$ release, suggesting increase in the efficacy of $Ca^{2+}$ release at given SR $Ca^{2+}$ loading. These results suggest that murrayafoline-A may enhance contractility via increase in $Ca^{2+}$ release from the SR through the ryanodine receptors in ventricular myocytes.

Stretch-activated $K^+$ Channels in Rat Atrial Myocytes

  • Youm, Jae-Boum
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권6호
    • /
    • pp.341-348
    • /
    • 2003
  • Mechanical stimuli to the cardiac myocytes initiate many biochemical and physiological events. Stretch-activated cation channels have been suggested to mediate these events. In this study, cell-attached and inside-out excised-patch clamp methods were used to identify stretch-activated cation channels in adult rat atrial myocytes. Channel openings were increased in cell-attached configuration when negative pressure was applied to the pipette, and also in inside-out excised patches by negative pressure. The channel was not permeable to $Cl^-$, $Na^+$ and $Cs^+$, but selectively permeable to $K^+$, and the degree of activation was dependent on the magnitude of negative pressure (full activation at ${\sim} -50 mmHg). In symmetrical 140 mM KCl, the slope conductance was $51.2{\pm}3$ pS between the potentials of -80 and 0 mV and $55{\pm}6$ pS between 0 and +80 mV (n=5). Glibenclamide ($100{mu}M$) or ATP (2 mM) failed to block the channel openings, indicating that it is not ATP-sensitive $K^+$ channel. Arachidonic acid ($30{mu}M$), which has been shown to activate a $K^+$ channel cooperatively with membrane stretch, did not affect the channel activity. $GdCl_3$ ($100{mu}M$) also did not alter the activity. These results demonstrate that the mechanical stretch in rat atrial myocytes activates a novel $K^+$-selective cation channel, which is not associated with other $K^+$ channels such as ATP-sensitive and arachidonic acid-activated $K^+$ channel.

The Effects of Intracellular Monocarboxylates on the ATP-sensitive Potassium Channels in Rabbit Ventricular Myocytes

  • Kim, Na-Ri;Han, Jin;Kim, Eui-Yong;Ho, Won-Kyung;Earm, Yung E.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권5호
    • /
    • pp.581-589
    • /
    • 1998
  • A regulating mechanism of the ATP-sensitive potassium channels $(K_{ATP}\;channels)$ is yet to fully explained. This study was carried out to investigate the effects of intracellular application of monocarboxylates (acetate, formate, lactate, and pyruvate) on $K_{ATP}$ channels in isolated rabbit ventricular myocytes. Single channel currents of $K_{ATP}$ channels were recorded using the excised inside-out or permeabilized attached (open-cell) patch-clamp technique at room temperature. Intracellular application of acetate, formate and pyruvate led to an inhibition of channel activity, whereas intracellular application of lactate increased channel activity. These effects were reversible upon washout. Analysis of single channel kinetics showed that monocarboxylates did not affect open-time constant and close-time constant. These results suggest that monocarboxylates participate in modulating $K_{ATP}$ channels activity in cardiac cells and that modulation of $K_{ATP}$ channels activity may resolve the discrepancy between the low $K_i$ in excised membrane patches and high levels of intracellular ATP concentration during myocardial ischemia or hypoxia.

  • PDF

기니픽 심장과 심근 세포에서 ${\alpha}_1-Adrenergic$ 자극에 의한 $Mg^{2+}$ 유리조절 (Regulation of $Mg^{2+}$ Release in Guinea Pig Heart and Isolated Ventricular Myocytes by ${\alpha}_1-Adrenergic$ Stimulation)

  • 강형섭;장성은;김진상
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권6호
    • /
    • pp.717-730
    • /
    • 1997
  • $Mg^{2+}$ is the fourth most abundant cation in cellular organisms. Although the biological chemistry and the physiological roles of the magnesium ion were well known, the regulation of intracellular $Mg^{2+}$ in mammalian cells is not fully understood. More recently, however, the mechanism of $Mg^{2+}$ mobilization by hormonal stimulation has been investigated in hearts and in myocytes. In this work we have investigated the regulation mechanism responsible for the $Mg^{2+}$ mobilization induced by ${\alpha}1-adrenoceptor$ stimulation in perfused guinea pig hearts or isolated myocytes. The $Mg^{2+}$ content of the perfusate or the supernatant was measured by atomic absorbance spectrophotometry. The elimination of $Mg^{2+}$ in the medium increased the force of contraction of right ventricular papillary muscles. Phenylephrine also enhanced the force of contraction in the presence of $Mg^{2+}$-free medium. ${\alpha}1-Agonists$ such as phenylephrine were found to induce $Mg^{2+}$ efflux in both perfused hearts or myocytes. This was blocked by prazosin, a ${\alpha}1-adrenoceptor$ antagonist. $Mg^{2+}$ efflux by phenylephrine was amplified by $Na^+$ channel blockers, an increase in extracellular $Ca^{2+}$ or a decrease in extracellular $Na^+$. By contrast, the $Mg^{2+}$ influx was induced by verapamil, nifedipine, ryanodine, lidocaine or tetrodotoxin in perfused hearts, but not in myocytes. $W_7$, a $Ca^{2+}/calmodulin$ antagonist, completely blocked the pheylephrine-, A23187-, veratridine-, $Ca^{2+}-induced$ $Mg^{2+}$ efflux in perfused hearts or isolated myocytes. In addition, $Mg^{2+}$ efflux was induced by $W_7$ in myocytes but not in perfused heart. In conclusion, An increase in $Mg^{2+}$ efflux by ${\alpha}1-adrenoceptor$ stimulation in hearts can be through $IP_3$ and $Ca^{2+}-calmodulin$ dependent mechanism.

  • PDF

Mitochondrial energy metabolic transcriptome profiles during cardiac differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Kim, Yeseul;Kim, Jae Ho;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권5호
    • /
    • pp.357-365
    • /
    • 2022
  • Simultaneous myofibril and mitochondrial development is crucial for the cardiac differentiation of pluripotent stem cells (PSCs). Specifically, mitochondrial energy metabolism (MEM) development in cardiomyocytes is essential for the beating function. Although previous studies have reported that MEM is correlated with cardiac differentiation, the process and timing of MEM regulation for cardiac differentiation remain poorly understood. Here, we performed transcriptome analysis of cells at specific stages of cardiac differentiation from mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs). We selected MEM genes strongly upregulated at cardiac lineage commitment and in a time-dependent manner during cardiac maturation and identified the protein-protein interaction networks. Notably, MEM proteins were found to interact closely with cardiac maturation-related proteins rather than with cardiac lineage commitment-related proteins. Furthermore, MEM proteins were found to primarily interact with cardiac muscle contractile proteins rather than with cardiac transcription factors. We identified several candidate MEM regulatory genes involved in cardiac lineage commitment (Cck, Bdnf, Fabp4, Cebpα, and Cdkn2a in mESC-derived cells, and CCK and NOS3 in hiPSC-derived cells) and cardiac maturation (Ppargc1α, Pgam2, Cox6a2, and Fabp3 in mESC-derived cells, and PGAM2 and SLC25A4 in hiPSC-derived cells). Therefore, our findings show the importance of MEM in cardiac maturation.

Salubrinal Alleviates Pressure Overload-Induced Cardiac Hypertrophy by Inhibiting Endoplasmic Reticulum Stress Pathway

  • Rani, Shilpa;Sreenivasaiah, Pradeep Kumar;Cho, Chunghee;Kim, Do Han
    • Molecules and Cells
    • /
    • 제40권1호
    • /
    • pp.66-72
    • /
    • 2017
  • Pathological hypertrophy of the heart is closely associated with endoplasmic reticulum stress (ERS), leading to maladaptations such as myocardial fibrosis, induction of apoptosis, and cardiac dysfunctions. Salubrinal is a known selective inhibitor of protein phosphatase 1 (PP1) complex involving dephosphorylation of phospho-eukaryotic translation initiation factor 2 subunit $(p-eIF2)-{\alpha}$, the key signaling process in the ERS pathway. In this study, the effects of salubrinal were examined on cardiac hypertrophy using the mouse model of transverse aortic constriction (TAC) and cell model of neonatal rat ventricular myocytes (NRVMs). Treatment of TAC-induced mice with salubrinal ($0.5mg{\cdot}kg^{-1}{\cdot}day^{-1}$) alleviated cardiac hypertrophy and tissue fibrosis. Salubrinal also alleviated hypertrophic growth in endothelin 1 (ET1)-treated NRVMs. Therefore, the present results suggest that salubrinal may be a potentially efficacious drug for treating pathological cardiac remodeling.

Diclofenac, a Non-steroidal Anti-inflammatory Drug, Inhibits L-type $Ca^{2+}$ Channels in Neonatal Rat Ventricular Cardiomyocytes

  • Yarishkin, Oleg V.;Hwang, Eun-Mi;Kim, Dong-Gyu;Yoo, Jae-Cheal;Kang, Sang-Soo;Kim, Deok-Ryoung;Shin, Jae-Hee-Jung;Chung, Hye-Joo;Jeong, Ho-Sang;Kang, Da-Won;Han, Jae-Hee;Park, Jae-Yong;Hong, Seong-Geun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권6호
    • /
    • pp.437-442
    • /
    • 2009
  • A non-steroidal anti-inflammatory drug (NSAID) has many adverse effects including cardiovascular (CV) risk. Diclofenac among the nonselective NSAIDs has the highest CV risk such as congestive heart failure, which resulted commonly from the impaired cardiac pumping due to a disrupted excitationcontraction (E-C) coupling. We investigated the effects of diclofenac on the L-type calcium channels which are essential to the E-C coupling at the level of single ventricular myocytes isolated from neonatal rat heart, using the whole-cell voltage-clamp technique. Only diclofenac of three NSAIDs, including naproxen and ibuprofen, significantly reduced inward whole cell currents. At concentrations higher than $3\;{\mu}M$, diclofenac inhibited reversibly the $Na^+$ current and did irreversibly the L-type $Ca^{2+}$ channels-mediated inward current $(IC_{50}=12.89\pm0.43\;{\mu}M)$ in a dose-dependent manner. However, nifedipine, a well-known L-type channel blocker, effectively inhibited the L-type $Ca^{2+}$ currents but not the $Na^+$ current. Our finding may explain that diclofenac causes the CV risk by the inhibition of L-type $Ca^{2+}$ channel, leading to the impairment of E-C coupling in cardiac myocytes.