• Title/Summary/Keyword: Cardiac MRI

Search Result 108, Processing Time 0.024 seconds

Imaging Findings of Coronary Artery Fistula in Children: A Pictorial Review

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • v.22 no.12
    • /
    • pp.2062-2072
    • /
    • 2021
  • Coronary artery fistula, defined as an abnormal communication between the coronary arteries and a cardiac chamber (most commonly) or a thoracic great vessel, may result in hemodynamically significant problems due to vascular shunting in children. Echocardiography, cardiac catheterization, cardiac MRI, and cardiac CT may be used to evaluate coronary artery fistula in children. Recently, CT has played a pivotal role for the accurate diagnosis of coronary artery fistula in children. Surgical or interventional treatment is performed for hemodynamically significant coronary artery fistulas. In this pictorial review, the detailed imaging findings of coronary artery fistula in children are described.

Delayed Cerebral Metastases from Completely Resected Cardiac Myxoma: Case Report and Review of Literature (완전히 절제된 심장 점액종의 지연된 뇌전이: 증례보고 및 문헌고찰)

  • Kim, Ah-Hyun;Lee, Jae-Wook;Lee, Mi-Kyung;Yoon, Pyeong-Ho;Kim, Min-Jung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.15 no.2
    • /
    • pp.165-169
    • /
    • 2011
  • Cardiac myxoma is the most common benign tumor of the heart. However, low incidence of recurrence and metastasis has been reported. A 49-year-old female patient was admitted in the hospital due to sudden onset of left side weakness. Magnetic resonance imaging (MRI) of brain showed multifocal areas of diffusion restriction on diffusion weighted images. Echocardiography was performed to evaluate the cause of embolic brain infarction and cardiac myxoma was found in the left atrium. The patient underwent complete excision of the mass. One year later, the patient was readmitted with symptoms of dysarthria. Brain MRI showed newly developed multiple hemorrhagic metastatic lesions. The patient underwent radiotherapy of the metastatic lesions. Although rare, cardiac myxoma can cause delayed metastasis. We report a rare case of delayed multiple cerebral metastases from the completely resected cardiac myxoma.

Tricuspid Valve Imaging and Right Ventricular Function Analysis Using Cardiac CT and MRI

  • Yura Ahn;Hyun Jung Koo;Joon-Won Kang;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.22 no.12
    • /
    • pp.1946-1963
    • /
    • 2021
  • Cardiac computed tomography (CT) and cardiac magnetic resonance imaging (CMR) can reveal the detailed anatomy and function of the tricuspid valve and right ventricle (RV). Quantification of tricuspid regurgitation (TR) and analysis of RV function have prognostic implications. With the recently available transcatheter treatment options for diseases of the tricuspid valve, evaluation of the tricuspid valve using CT and CMR has become important in terms of patient selection and procedural guidance. Moreover, CT enables post-procedural investigation of the causes of valve dysfunction, such as pannus or thrombus. This review describes the anatomy of the tricuspid valve and CT and CMR imaging protocols for right heart evaluation, including RV function and TR analyses. We also demonstrate the pre-procedural planning for transcatheter treatment of TR and imaging of postoperative complications using CT.

Cardiac Magnetic Resonance Imaging Using Multi-physiological Intelligent Trigger System (멀티 생체신호 동기 시스템을 이용한 심장자기공명영상)

  • Park, Jinho;Yoon, Jong-Hyun;Yang, Young-Joong;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.3
    • /
    • pp.244-252
    • /
    • 2014
  • Purpose : We proposed a multi-physiological signals based real-time intelligent triggering system(MITS) for Cardiac MRI. Induced noise of the system was analyzed. Materials and Methods: MITS makes cardiac MR imaging sequence synchronize to the cardiac motion using ECG, respiratory signal and second order derivative of $SPO_2$signal. Abnormal peaks due to arrhythmia or subject's motion are rejected using the average R-R intervals and R-peak values. Induced eddy currents by gradients switching in cardiac MR imaging are analyzed. The induced eddy currents were removed by hardware and software filters. Results: Cardiac MR images that synchronized to the cardiac and respiratory motion are acquired using MITS successfully without artifacts caused by induced eddy currents of gradient switching or subject's motion or arrhythmia. We showed that the second order derivative of the $SPO_2$ signal can be used as a complement to the ECG signals. Conclusion: The proposed system performs cardiac and respiratory gating with multi-physiological signals in real time. During the cardiac gating, induced noise caused by eddy currents is removed. False triggers due to subject's motion or arrhythmia are rejected. The cardiac MR imaging with free breathing is obtained using MITS.

Estimation Method for Brain Activities are Influenced by Blood Pulsation Effect (Blood Pulsation의 효과가 뇌 활성화에 미치는 영향을 알아보는 방법)

  • Lee, W.H.;Ku, J.H.;Lee, H.R.;Han, K.W.;Park, J.S.;Kim, J.J.;Yoon, K.J.;Kim, I.Y.;Kim, S.I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.338-343
    • /
    • 2007
  • BOLD T2*-weighted MR images reflects cortical blood flow and oxygenation alterations. fMRI study relies on the detection of localized changes in BOLD signal intensity. Since fMRI measures the very small modulations in BOLD signal intensity that occur during changes in brain activity, it is also very sensitive to small signal intensity variations caused by physiologic noise during the scan. Due to the complexity of movement of various organs associated with heart beat, it is important to reduce cardiac related noise rather than other physiological noise which could be required with relatively simple method. Therefore, a number of methods have been developed for the estimation and reduction of cardiac noise in fMRI study. But, each method has limitation. In this study, we proposed a new estimation method for brain activities influenced by blood pulsation effect using regression analysis with blood pulsation signal and the correspond slice of fMRI. We could find out that the right anterior cingulate cortex and right olfactory cortex and left olfactory cortex were largely influenced by blood pulsation effect for new method. These observed areas are mostly on the structure of anterior cerebral artery in the brain. That is convinced with that our method would be valid and our new method is easier to apply in practice and reduce computational burden than the retrospective method.

Automatic Left Ventricle Segmentation Algorithm using K-mean Clustering and Graph Searching on Cardiac MRI (K-평균 클러스터링과 그래프 탐색을 통한 심장 자기공명영상의 좌심실 자동분할 알고리즘)

  • Jo, Hyun-Wu;Lee, Hae-Yeoun
    • The KIPS Transactions:PartB
    • /
    • v.18B no.2
    • /
    • pp.57-66
    • /
    • 2011
  • To prevent cardiac diseases, quantifying cardiac function is important in routine clinical practice by analyzing blood volume and ejection fraction. These works have been manually performed and hence it requires computational costs and varies depending on the operator. In this paper, an automatic left ventricle segmentation algorithm is presented to segment left ventricle on cardiac magnetic resonance images. After coil sensitivity of MRI images is compensated, a K-mean clustering scheme is applied to segment blood area. A graph searching scheme is employed to correct the segmentation error from coil distortions and noises. Using cardiac MRI images from 38 subjects, the presented algorithm is performed to calculate blood volume and ejection fraction and compared with those of manual contouring by experts and GE MASS software. Based on the results, the presented algorithm achieves the average accuracy of 6.2mL${\pm}$5.6, 2.9mL${\pm}$3.0 and 2.1%${\pm}$1.5 in diastolic phase, systolic phase and ejection fraction, respectively. Moreover, the presented algorithm minimizes user intervention rates which was critical to automatize algorithms in previous researches.

Automatic Left Ventricle Segmentation by Edge Classification and Region Growing on Cardiac MRI (심장 자기공명영상의 에지 분류 및 영역 확장 기법을 통한 자동 좌심실 분할 알고리즘)

  • Lee, Hae-Yeoun
    • The KIPS Transactions:PartB
    • /
    • v.15B no.6
    • /
    • pp.507-516
    • /
    • 2008
  • Cardiac disease is the leading cause of death in the world. Quantification of cardiac function is performed by manually calculating blood volume and ejection fraction in routine clinical practice, but it requires high computational costs. In this study, an automatic left ventricle (LV) segmentation algorithm using short-axis cine cardiac MRI is presented. We compensate coil sensitivity of magnitude images depending on coil location, classify edge information after extracting edges, and segment LV by applying region-growing segmentation. We design a weighting function for intensity signal and calculate a blood volume of LV considering partial voxel effects. Using cardiac cine SSFP of 38 subjects with Cornell University IRB approval, we compared our algorithm to manual contour tracing and MASS software. Without partial volume effects, we achieved segmentation accuracy of $3.3mL{\pm}5.8$ (standard deviation) and $3.2mL{\pm}4.3$ in diastolic and systolic phases, respectively. With partial volume effects, the accuracy was $19.1mL{\pm}8.8$ and $10.3mL{\pm}6.1$ in diastolic and systolic phases, respectively. Also in ejection fraction, the accuracy was $-1.3%{\pm}2.6$ and $-2.1%{\pm}2.4$ without and with partial volume effects, respectively. Results support that the proposed algorithm is exact and useful for clinical practice.

Deep Learning-Based Algorithm for the Detection and Characterization of MRI Safety of Cardiac Implantable Electronic Devices on Chest Radiographs

  • Ue-Hwan Kim;Moon Young Kim;Eun-Ah Park;Whal Lee;Woo-Hyun Lim;Hack-Lyoung Kim;Sohee Oh;Kwang Nam Jin
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1918-1928
    • /
    • 2021
  • Objective: With the recent development of various MRI-conditional cardiac implantable electronic devices (CIEDs), the accurate identification and characterization of CIEDs have become critical when performing MRI in patients with CIEDs. We aimed to develop and evaluate a deep learning-based algorithm (DLA) that performs the detection and characterization of parameters, including MRI safety, of CIEDs on chest radiograph (CR) in a single step and compare its performance with other related algorithms that were recently developed. Materials and Methods: We developed a DLA (X-ray CIED identification [XCID]) using 9912 CRs of 958 patients with 968 CIEDs comprising 26 model groups from 4 manufacturers obtained between 2014 and 2019 from one hospital. The performance of XCID was tested with an external dataset consisting of 2122 CRs obtained from a different hospital and compared with the performance of two other related algorithms recently reported, including PacemakerID (PID) and Pacemaker identification with neural networks (PPMnn). Results: The overall accuracies of XCID for the manufacturer classification, model group identification, and MRI safety characterization using the internal test dataset were 99.7% (992/995), 97.2% (967/995), and 98.9% (984/995), respectively. These were 95.8% (2033/2122), 85.4% (1813/2122), and 92.2% (1956/2122), respectively, with the external test dataset. In the comparative study, the accuracy for the manufacturer classification was 95.0% (152/160) for XCID and 91.3% for PPMnn (146/160), which was significantly higher than that for PID (80.0%,128/160; p < 0.001 for both). XCID demonstrated a higher accuracy (88.1%; 141/160) than PPMnn (80.0%; 128/160) in identifying model groups (p < 0.001). Conclusion: The remarkable and consistent performance of XCID suggests its applicability for detection, manufacturer and model identification, as well as MRI safety characterization of CIED on CRs. Further studies are warranted to guarantee the safe use of XCID in clinical practice.

Feasibility of Free-Breathing, Non-ECG-Gated, Black-Blood Cine Magnetic Resonance Images With Multitasking in Measuring Left Ventricular Function Indices

  • Pengfei Peng;Xun Yue;Lu Tang;Xi Wu;Qiao Deng;Tao Wu;Lei Cai;Qi Liu;Jian Xu;Xiaoqi Huang;Yucheng Chen;Kaiyue Diao;Jiayu Sun
    • Korean Journal of Radiology
    • /
    • v.24 no.12
    • /
    • pp.1221-1231
    • /
    • 2023
  • Objective: To clinically validate the feasibility and accuracy of cine images acquired through the multitasking method, with no electrocardiogram gating and free-breathing, in measuring left ventricular (LV) function indices by comparing them with those acquired through the balanced steady-state free precession (bSSFP) method, with multiple breath-holds and electrocardiogram gating. Materials and Methods: Forty-three healthy volunteers (female:male, 30:13; mean age, 23.1 ± 2.3 years) and 36 patients requiring an assessment of LV function for various clinical indications (female:male, 22:14; 57.8 ± 11.3 years) were enrolled in this prospective study. Each participant underwent cardiac magnetic resonance imaging (MRI) using the multiple breath-hold bSSFP method and free-breathing multitasking method. LV function parameters were measured for both MRI methods. Image quality was assessed through subjective image quality scores (1 to 5) and calculation of the contrast-to-noise ratio (CNR) between the myocardium and blood pool. Differences between the two MRI methods were analyzed using the Bland-Altman plot, paired t-test, or Wilcoxon signed-rank test, as appropriate. Results: LV ejection fraction (LVEF) was not significantly different between the two MRI methods (P = 0.222 in healthy volunteers and P = 0.343 in patients). LV end-diastolic mass was slightly overestimated with multitasking in both healthy volunteers (multitasking vs. bSSFP, 60.5 ± 10.7 g vs. 58.0 ± 10.4 g, respectively; P < 0.001) and patients (69.4 ± 18.1 g vs. 66.8 ± 18.0 g, respectively; P = 0.003). Acceptable and comparable image quality was achieved for both MRI methods (multitasking vs. bSSFP, 4.5 ± 0.7 vs. 4.6 ± 0.6, respectively; P = 0.203). The CNR between the myocardium and blood pool showed no significant differences between the two MRI methods (18.89 ± 6.65 vs. 18.19 ± 5.83, respectively; P = 0.480). Conclusion: Multitasking-derived cine images obtained without electrocardiogram gating and breath-holding achieved similar image quality and accurate quantification of LVEF in healthy volunteers and patients.

Diastolic Function in Patients with Hypertrophic Cardiomyopathy: Evaluation Using the Phase-contrast MRI Measurement of Mitral Valve and Pulmonary Vein Flow Velocities (비대성심근증 환자의 이완기능평가: 승모판과 폐정맥 유속을 측정한 위상차 MRI의 이용)

  • Kim, Eun Young;Choe, Yeon Hyeon;Kim, Sung Mok;Lee, Sang-Chol;Chang, Sung-A;Oh, Jae K.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.4
    • /
    • pp.314-322
    • /
    • 2014
  • Purpose: Diastolic dysfunction is a common problem in patients with hypertrophic cardiomyopathy (HCM). The purpose of this study was to assess the role of MRI in the assessment of diastolic function using mitral valve and pulmonary vein flow velocities in HCM patients. Methods and Results: Phase-contrast MRI (mitral valve and pulmonary vein) and transthoracic echocardiography was successfully performed for 59 HCM patients (44 men and 15 women; mean age, 51 years). Forty-nine patients had a diastolic dysfunction; grade 1 (n = 20), grade 2 (n = 27), and grade 3 (n = 2) using echocardiography, and ten patients had normal diastolic function. The transmitral inflow parameters (E, A, and E/A ratios) obtained by MRI showed positive correlation with the same parameters measured by echocardiography (Pearson's r values were 0.47, 0.60, and 0.75 for E, A, E/A, respectively, all P < 0.001). With the flow information of the pulmonary vein from cardiac MRI, pseudo-normalized pattern (n = 8) could be distinguished from true normal filling pattern (n = 17), and the diastolic function grades by cardiac MRI showed moderate agreement with those of echocardiography (kappa value = 0.45, P < 0.001). Conclusions: Assessment of left ventricle diastolic function is feasible using phase-contrast MRI in HCM patients. Analysis of pulmonary vein flow velocity on MRI is useful for differentiating pseudo-normal from normal diastolic function in HCM patients.