• Title/Summary/Keyword: Cardiac -specific gene

Search Result 22, Processing Time 0.025 seconds

The Rat Myosin Light Chain Promoter-Driven DsRed Reporter System Allows Specific Monitoring of Bone Marrow Mesenchymal Stem Cell- Derived Cardiomyocytes

  • Choi, Seung-Cheol;Lim, Do-Sun
    • Reproductive and Developmental Biology
    • /
    • v.32 no.1
    • /
    • pp.21-25
    • /
    • 2008
  • Bone marrow mesenchymal stem cells (BMMSCs) have the capacity for self-renewal and differentiation into a variety of cell types. They represent an attractive source of cells for gene and cell therapy. The purpose of this study is to direct the specific expression of the DsRed reporter gene in $Sca-1^+$ BMMSCs differentiated into a cardiomyogenic lineage. We constructed the prMLC-2v-DsRed vector expressing DsRed under the control of the 309 tp fragment of the rat MLC-2v 5'-flanking region. The specific expression of the DsRed reporter gene under the transcriptional control of the 309 bp fragment of the rat MLC-2v promoter was tested in 5-azacytidine healed-$Sca-1^+$ BMMSCs over 2 weeks after the prMLC-2v-DsRed transfection. The prMLC-2v-DsRed was specifically expressed in the $Sca-1^+$ BMMSCs with cardiomyogenic lineage differentiation and it demonstrates that the 309 bp sequences of the rat MLC-2v 5'-flanking region is sufficient to confer cardiac specific expression on a DsRed reporter gene. The cardiac-specific promoter-driven reporter vector provides an important tool for the study of stem cell differentiation and cell replacement therapy in ischemic cardiomyopathy.

Stage specific transcriptome profiles at cardiac lineage commitment during cardiomyocyte differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Han, Jin
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.464-469
    • /
    • 2021
  • Cardiomyocyte differentiation occurs through complex and finely regulated processes including cardiac lineage commitment and maturation from pluripotent stem cells (PSCs). To gain some insight into the genome-wide characteristics of cardiac lineage commitment, we performed transcriptome analysis on both mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs) at specific stages of cardiomyocyte differentiation. Specifically, the gene expression profiles and the protein-protein interaction networks of the mESC-derived platelet-derived growth factor receptor-alpha (PDGFRα)+ cardiac lineage-committed cells (CLCs) and hiPSC-derived kinase insert domain receptor (KDR)+ and PDGFRα+ cardiac progenitor cells (CPCs) at cardiac lineage commitment were compared with those of mesodermal cells and differentiated cardiomyocytes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the genes significantly upregulated at cardiac lineage commitment were associated with responses to organic substances and external stimuli, extracellular and myocardial contractile components, receptor binding, gated channel activity, PI3K-AKT signaling, and cardiac hypertrophy and dilation pathways. Protein-protein interaction network analysis revealed that the expression levels of genes that regulate cardiac maturation, heart contraction, and calcium handling showed a consistent increase during cardiac differentiation; however, the expression levels of genes that regulate cell differentiation and multicellular organism development decreased at the cardiac maturation stage following lineage commitment. Additionally, we identified for the first time the protein-protein interaction network connecting cardiac development, the immune system, and metabolism during cardiac lineage commitment in both mESC-derived PDGFRα+ CLCs and hiPSC-derived KDR+PDGFRα+ CPCs. These findings shed light on the regulation of cardiac lineage commitment and the pathogenesis of cardiometabolic diseases.

Formation of Functional Cardiomyocytes Derived from Mouse Embryonic Stem Cells

  • 신현아;김은영;이영재;이금실;조황윤;박세필;임진호
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.76-76
    • /
    • 2003
  • Pluripotent embryonic stem cells can differentiate into beating cardiomyocytes with proper culture conditions and stimulants via embryo-like aggregates. We describe here the use of mouse embryonic stem (mES03) cells as a reproducible differentiation system for cardiomyocyte. mES03 cells growing in colonies were dissociated and allowed to re-aggregated in suspension [embryoid body (EB) formation〕. To induce cardiomyocytic differentiation, cells were exposed to 0.75% dimethyl sulfoxide (DMSO) during EB formation for 4 days and then another 4 days without DMSO (4+/4-). Thus treated EB was plated onto gelatin-coated dishes for differentiation. Spontaneously contracting colonies which appeared in approximately 4~5 days upon differentiation were mechanically dissected, enzymatically dispersed, plated onto coverslips, and then incubated for another 48~72 hrs. By RT-PCR, robust expression of cardiac myosin heavy chain $\alpha$, cardiac muscle heavy polypeptide 7 $\beta$($\beta$-MHC), cardiac transcription factor GATA4, and skeletal muscle-specific $\alpha$$_1$-subunit of the L-type calcium channel ($\alpha$$_1$CaC $h_{sm}$ ) were detected as early as 8 days after EB formation, but message of cardiac muscle-specific $\alpha$$_1$-subunit of the L-type calcium channel ($\alpha$$_1$CaCh) were reveled at a low level. In contrast, expression of myosin light chain (MLC-2V) and atrial natriuretic factor (ANF) were not detected during EB formation for 8 days. However, a strong expression of the atrial-specific ANF gene was expressed from day 8 onward, which were remained constant in EB. (cardiac specialization and terminal differentiation stage). Electrophysiological examination of spontaneously contracting cells showed ventricle-like action potential 17 days after the EB formation. This study indicates that mES03 cell-derived cardiomyocytes via 4+/4- protocol displayed biochemical and electrophysiological properties of subpopulation of cardiomyocytes.

  • PDF

Functional Cardiomyocytes Formation Derived from Mouse Embryonic Stem Cells

  • Shin, Hyun-Ah;Lee, Keum-Sil;Cho, Hwang-Yoon;Park, Sae-Young;Kim, Eun-Young;Lee, Young-Jae;Park, Se-Pill;Lim, Jin-Ho
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.100-100
    • /
    • 2003
  • Pluripotent embryonic stem (ES) cells differentiate spontaneously into beating cardiomyocytes via embryo-like aggregates. We describe the use of mouse embryonic stem (mES03) cells as a reproducible differentiation system for cardiomyocyte. To induce cardiomyocytic differentiation, mES03 cells were dissociated and allowed to aggregate (EB formation) at the presence of 0 75% dimethyl sulfoxide (DMSO) for 4 days and then another 4 days without DMSO (4+/4-). Thus treated EBs were plated onto gelatin-coated dish for differentiation. Spontaneously contracting colonies which appeared in approximately 4-5 days upon differentiation. Expression of cardiac-specific genes were determined by RT-PCR. Rebust expression of myosin light chain (MLC-2V), cardiac myosin heavy chain $\alpha$, cardiac muscle heavy polypeptide 7 $\beta(\beta$-MHC), cardiac transcription factor GATA4 and skeletal muscle-specific ${\alpha}_1$-subunit of the L-type calcium channel (${\alpha}_1 CaCh_{sm}$) were detected as early as 8 days after EB formation, but message of cardiac muscle-specific $\alpha$$_1$-subunit of the L-type calcium channel (${\alpha}_1$CaCh) were revealed at a low level. Strikingly, the expression of atrial natriuretic factor (ANF) was not detected. When spontaneous contracting cell masses were examined their electrophysiological features by patch-clamp technique, it showed ventricle-like action potential 17 days after the EB formation. This study indicates that mES03 cell-derived cardiomyocytes displayed biochemical and electrophysiological properties of cardiomyocytes and DMSO enhanced development of cardiomyocytes in 4+/4- method.

  • PDF

In Vitro Differentiated Functional Cardiomyocytes from Parthenogenetic Mouse Embryonic Stem Cells (단위발생유래 생쥐 배아줄기세포로부터 체외 분화된 기능성 심근세포)

  • Shin Hyun-Ah;Kim Eun-Young;Lee Keum-Sil;Cho Hwang-Yun;Lee Won-Don;Park Se-Pill;Lim Jin-Ho
    • Reproductive and Developmental Biology
    • /
    • v.30 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • This study was conducted to examine whether the parthenogenetic mouse embryonic stem (P-mES) cells can differentiate into functional cardiomyocytes in vitro similar to (mES) cells. p-mES04 and IVF-derived mES03 cells were cultured by suspension culture for 4 days. The formed embryoid bodies (EBs) were treated with 0.75% dimethyl-sulfoxide (DMSO) for further 4 days (4-/4+), and then plated onto gelatin coated culture dish. The appearance of contracting cardiomyocytes from the P-mES04 and mES03 cells was examined for 30 days. The highest cumulative frequency was detected at days 13 (69.83%) and 22 (61.3%), respectively. By immunocytochemistry, beating P-mES04 cells were positively stained with muscle specific anti-sarcomeric a-actinin Ab and cardiac specific anti-cardiac troponin I Ab similar to contracted mES03 cells. When the expression of cardiac muscle-specific genes was analyzed by RT-PCR, beating P-mES04 cells were expressed cardiac specific L-type calcium channel, a1C, cardiac myosin heavy chain a, cardiac muscle heavy polypeptide $7{\beta}$, GATA binding protein 4 and atrial natriuretic factor, but not expressed skeletal muscle specific L-type calcium channel, a1S, which was similar to male adult heart cells and mES03-derived beating cardiomyocytes. The result demonstrates that the P-mES cells can be used as an alternative for the study on the characteristic analysis of in vitro cardiomyocyte differentiation from the ES cells.

MicroRNA-1 in Cardiac Diseases and Cancers

  • Li, Jianzhe;Dong, Xiaomin;Wang, Zhongping;Wu, Jianhua
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.5
    • /
    • pp.359-363
    • /
    • 2014
  • MicroRNAs (miRs) are endogenous ${\approx}22$-nt non-coding RNAs that participate in the regulation of gene expression at post-transcriptional level. MiR-1 is one of the muscle-specific miRs, aberrant expression of miR-1 plays important roles in many physiological and pathological processes. In this review, we focus on the recent studies about miR-1 in cardiac diseases and cancers. The findings indicate that miR-1 may be a novel, important biomarker, and a potential therapeutic target in cardiac diseases and cancers.

Cloning and characterization of the cardiac-specific Lrrc10 promoter

  • Fan, Xiongwei;Yang, Qing;Wang, Youliang;Zhang, Yan;Wang, Jian;Yuan, Jiajia;Li, Yongqing;Wang, Yuequn;Deng, Yun;Yuan, Wuzhou;Mo, Xiaoyang;Wan, Yongqi;Ocorr, Karen;Yang, Xiao;Wu, Xiushan
    • BMB Reports
    • /
    • v.44 no.2
    • /
    • pp.123-128
    • /
    • 2011
  • Leucine-rich repeat containing protein 10 (LRRC10) is characterized as a cardiac-specific gene, suggesting a role in heart development and disease. A severe cardiac morphogenic defect in zebrafish morphants was recently reported but a contradictory result was found in mice, suggesting a more complicated molecular mechanism exists during mouse embryonic development. To elucidate how LRRC10 is regulated, we analyzed the 5'enhancer region approximately 3 kilo bases (kb) upstream of the Lrrc10 start site using luciferase reporter gene assays. Our characterization of the Lrrc10 promoter indicates it possesses complicated cis-and trans-acting elements. We show that GATA4 and MEF2C could both increase transcriptional activity of Lrrc10 promoter individually but that they do not act synergistically, suggesting that there exists a more complex regulation pattern. Surprisingly, knockout of Gata4 and Mef2c binding sites in the 5’enhancer region (-2,894/-2,889) didn't change the transcriptional activity of the Lrrc10 promoter and the likely GATA4 binding site identified was located in a region only 100 base pair (bp) upstream of the promoter. Our data provides insight into the molecular regulation of Lrrc10 expression, which probably also contributes to its tissue-specific expression.

Long Noncoding RNA MHRT Protects Cardiomyocytes against H2O2-Induced Apoptosis

  • Zhang, Jianying;Gao, Caihua;Meng, Meijuan;Tang, Hongxia
    • Biomolecules & Therapeutics
    • /
    • v.24 no.1
    • /
    • pp.19-24
    • /
    • 2016
  • Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. The exploration of new biomarkers with high sensitivity and specificity for early diagnosis of AMI therefore becomes one of the primary task. In the current study, we aim to detect whether there is any heart specific long noncoding RNA (lncRNA) releasing into the circulation during AMI, and explore its function in the neonatal rat cardiac myocytes injury induced by $H_2O_2$. Our results revealed that the cardiac-specific lncRNA MHRT (Myosin Heavy Chain Associated RNA Transcripts) was significantly elevated in the blood from AMI patients compared with the healthy control ($^*p<0.05$). Using an in vitro neonatal rat cardiac myocytes injury model, we demonstrated that lncRNA MHRT was upregulated in the cardiac myocytes after treatment with hydrogen peroxide ($H_2O_2$) via real-time RT-PCR (qRT-PCR). Furthermore, we knockdowned the MHRT gene by siRNA to confirm its roles in the $H_2O_2$-induced cardiac cell apoptosis, and found that knockdown of MHRT led to significant more apoptotic cells than the non-target control ($^{**}p<0.01$), indicating that the lncRNA MHRT is a protective factor for cardiomyocyte and the plasma concentration of MHRT may serve as a biomarker for myocardial infarction diagnosis in humans AMI.