• 제목/요약/키워드: Cardiac -specific gene

검색결과 24건 처리시간 0.032초

The Rat Myosin Light Chain Promoter-Driven DsRed Reporter System Allows Specific Monitoring of Bone Marrow Mesenchymal Stem Cell- Derived Cardiomyocytes

  • Choi, Seung-Cheol;Lim, Do-Sun
    • Reproductive and Developmental Biology
    • /
    • 제32권1호
    • /
    • pp.21-25
    • /
    • 2008
  • Bone marrow mesenchymal stem cells (BMMSCs) have the capacity for self-renewal and differentiation into a variety of cell types. They represent an attractive source of cells for gene and cell therapy. The purpose of this study is to direct the specific expression of the DsRed reporter gene in $Sca-1^+$ BMMSCs differentiated into a cardiomyogenic lineage. We constructed the prMLC-2v-DsRed vector expressing DsRed under the control of the 309 tp fragment of the rat MLC-2v 5'-flanking region. The specific expression of the DsRed reporter gene under the transcriptional control of the 309 bp fragment of the rat MLC-2v promoter was tested in 5-azacytidine healed-$Sca-1^+$ BMMSCs over 2 weeks after the prMLC-2v-DsRed transfection. The prMLC-2v-DsRed was specifically expressed in the $Sca-1^+$ BMMSCs with cardiomyogenic lineage differentiation and it demonstrates that the 309 bp sequences of the rat MLC-2v 5'-flanking region is sufficient to confer cardiac specific expression on a DsRed reporter gene. The cardiac-specific promoter-driven reporter vector provides an important tool for the study of stem cell differentiation and cell replacement therapy in ischemic cardiomyopathy.

Stage specific transcriptome profiles at cardiac lineage commitment during cardiomyocyte differentiation from mouse and human pluripotent stem cells

  • Cho, Sung Woo;Kim, Hyoung Kyu;Sung, Ji Hee;Han, Jin
    • BMB Reports
    • /
    • 제54권9호
    • /
    • pp.464-469
    • /
    • 2021
  • Cardiomyocyte differentiation occurs through complex and finely regulated processes including cardiac lineage commitment and maturation from pluripotent stem cells (PSCs). To gain some insight into the genome-wide characteristics of cardiac lineage commitment, we performed transcriptome analysis on both mouse embryonic stem cells (mESCs) and human induced PSCs (hiPSCs) at specific stages of cardiomyocyte differentiation. Specifically, the gene expression profiles and the protein-protein interaction networks of the mESC-derived platelet-derived growth factor receptor-alpha (PDGFRα)+ cardiac lineage-committed cells (CLCs) and hiPSC-derived kinase insert domain receptor (KDR)+ and PDGFRα+ cardiac progenitor cells (CPCs) at cardiac lineage commitment were compared with those of mesodermal cells and differentiated cardiomyocytes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that the genes significantly upregulated at cardiac lineage commitment were associated with responses to organic substances and external stimuli, extracellular and myocardial contractile components, receptor binding, gated channel activity, PI3K-AKT signaling, and cardiac hypertrophy and dilation pathways. Protein-protein interaction network analysis revealed that the expression levels of genes that regulate cardiac maturation, heart contraction, and calcium handling showed a consistent increase during cardiac differentiation; however, the expression levels of genes that regulate cell differentiation and multicellular organism development decreased at the cardiac maturation stage following lineage commitment. Additionally, we identified for the first time the protein-protein interaction network connecting cardiac development, the immune system, and metabolism during cardiac lineage commitment in both mESC-derived PDGFRα+ CLCs and hiPSC-derived KDR+PDGFRα+ CPCs. These findings shed light on the regulation of cardiac lineage commitment and the pathogenesis of cardiometabolic diseases.

Formation of Functional Cardiomyocytes Derived from Mouse Embryonic Stem Cells

  • 신현아;김은영;이영재;이금실;조황윤;박세필;임진호
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2003년도 학술발표대회 발표논문초록집
    • /
    • pp.76-76
    • /
    • 2003
  • Pluripotent embryonic stem cells can differentiate into beating cardiomyocytes with proper culture conditions and stimulants via embryo-like aggregates. We describe here the use of mouse embryonic stem (mES03) cells as a reproducible differentiation system for cardiomyocyte. mES03 cells growing in colonies were dissociated and allowed to re-aggregated in suspension [embryoid body (EB) formation〕. To induce cardiomyocytic differentiation, cells were exposed to 0.75% dimethyl sulfoxide (DMSO) during EB formation for 4 days and then another 4 days without DMSO (4+/4-). Thus treated EB was plated onto gelatin-coated dishes for differentiation. Spontaneously contracting colonies which appeared in approximately 4~5 days upon differentiation were mechanically dissected, enzymatically dispersed, plated onto coverslips, and then incubated for another 48~72 hrs. By RT-PCR, robust expression of cardiac myosin heavy chain $\alpha$, cardiac muscle heavy polypeptide 7 $\beta$($\beta$-MHC), cardiac transcription factor GATA4, and skeletal muscle-specific $\alpha$$_1$-subunit of the L-type calcium channel ($\alpha$$_1$CaC $h_{sm}$ ) were detected as early as 8 days after EB formation, but message of cardiac muscle-specific $\alpha$$_1$-subunit of the L-type calcium channel ($\alpha$$_1$CaCh) were reveled at a low level. In contrast, expression of myosin light chain (MLC-2V) and atrial natriuretic factor (ANF) were not detected during EB formation for 8 days. However, a strong expression of the atrial-specific ANF gene was expressed from day 8 onward, which were remained constant in EB. (cardiac specialization and terminal differentiation stage). Electrophysiological examination of spontaneously contracting cells showed ventricle-like action potential 17 days after the EB formation. This study indicates that mES03 cell-derived cardiomyocytes via 4+/4- protocol displayed biochemical and electrophysiological properties of subpopulation of cardiomyocytes.

  • PDF

Functional Cardiomyocytes Formation Derived from Mouse Embryonic Stem Cells

  • Shin, Hyun-Ah;Lee, Keum-Sil;Cho, Hwang-Yoon;Park, Sae-Young;Kim, Eun-Young;Lee, Young-Jae;Park, Se-Pill;Lim, Jin-Ho
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.100-100
    • /
    • 2003
  • Pluripotent embryonic stem (ES) cells differentiate spontaneously into beating cardiomyocytes via embryo-like aggregates. We describe the use of mouse embryonic stem (mES03) cells as a reproducible differentiation system for cardiomyocyte. To induce cardiomyocytic differentiation, mES03 cells were dissociated and allowed to aggregate (EB formation) at the presence of 0 75% dimethyl sulfoxide (DMSO) for 4 days and then another 4 days without DMSO (4+/4-). Thus treated EBs were plated onto gelatin-coated dish for differentiation. Spontaneously contracting colonies which appeared in approximately 4-5 days upon differentiation. Expression of cardiac-specific genes were determined by RT-PCR. Rebust expression of myosin light chain (MLC-2V), cardiac myosin heavy chain $\alpha$, cardiac muscle heavy polypeptide 7 $\beta(\beta$-MHC), cardiac transcription factor GATA4 and skeletal muscle-specific ${\alpha}_1$-subunit of the L-type calcium channel (${\alpha}_1 CaCh_{sm}$) were detected as early as 8 days after EB formation, but message of cardiac muscle-specific $\alpha$$_1$-subunit of the L-type calcium channel (${\alpha}_1$CaCh) were revealed at a low level. Strikingly, the expression of atrial natriuretic factor (ANF) was not detected. When spontaneous contracting cell masses were examined their electrophysiological features by patch-clamp technique, it showed ventricle-like action potential 17 days after the EB formation. This study indicates that mES03 cell-derived cardiomyocytes displayed biochemical and electrophysiological properties of cardiomyocytes and DMSO enhanced development of cardiomyocytes in 4+/4- method.

  • PDF

단위발생유래 생쥐 배아줄기세포로부터 체외 분화된 기능성 심근세포 (In Vitro Differentiated Functional Cardiomyocytes from Parthenogenetic Mouse Embryonic Stem Cells)

  • 신현아;김은영;이금실;조황윤;이원돈;박세필;임진호
    • Reproductive and Developmental Biology
    • /
    • 제30권1호
    • /
    • pp.47-52
    • /
    • 2006
  • 본 연구는 단위발생유래 생쥐 배아줄기세포(P-mES)지가 체외수정유래 생쥐 배아줄기세포 (mES)와 마찬가지로 기능성 심근세포로 체외 분화되는지를 조사하였다. 각 세포주 P-mES04와 MES03를 4일간 부유 배양하여 배아체 (EB)를 형성한 다음 4일간 DMSO를 추가적으로 처리한 뒤 젤라틴이 코팅된 배양접시에 부착시켰다(4-/4+). P-mES04와 mES03으로부터 수축성 심근세포 생성 여부를 30일간 관찰한 결과, 각각 13일(69.83%)과 22일 (61.3%)에 누적 형성율이 가장 높았다. 면역 세포화학염색 결과, 수축성을 나타내는 P-mES04 세포는 수축성 mES03 세포에서와 같이 근육 특이적인 anti-sarcomeric a-actinin 항체와 심근 특이적인 anti-cardiac troponin I 항체에 염색되는 것을 확인하였다. 또한 RT-PCR 결과, 수축성을 나타내는 P-mES04 세포는 심근특이적인 L-type calcium channel, a1C, cardiac myosin heavy chain a, cardiac muscle heavy polypeptide $7{\beta}$, GATA binding protein 4와 atrial natriuretic factor는 발현하나, 골격근 특이적인 L-type calcium channel, a1S는 발현하지 않아 웅성 성체의 심장세포와 유사한 양상을 보였다. 본 연구의 결과는 단위발생 유래 생쥐 배아 줄기세포를 배아줄기세포의 연구의 대체제로 이용할 수 있음을 보여준다.

MicroRNA-1 in Cardiac Diseases and Cancers

  • Li, Jianzhe;Dong, Xiaomin;Wang, Zhongping;Wu, Jianhua
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권5호
    • /
    • pp.359-363
    • /
    • 2014
  • MicroRNAs (miRs) are endogenous ${\approx}22$-nt non-coding RNAs that participate in the regulation of gene expression at post-transcriptional level. MiR-1 is one of the muscle-specific miRs, aberrant expression of miR-1 plays important roles in many physiological and pathological processes. In this review, we focus on the recent studies about miR-1 in cardiac diseases and cancers. The findings indicate that miR-1 may be a novel, important biomarker, and a potential therapeutic target in cardiac diseases and cancers.

Cloning and characterization of the cardiac-specific Lrrc10 promoter

  • Fan, Xiongwei;Yang, Qing;Wang, Youliang;Zhang, Yan;Wang, Jian;Yuan, Jiajia;Li, Yongqing;Wang, Yuequn;Deng, Yun;Yuan, Wuzhou;Mo, Xiaoyang;Wan, Yongqi;Ocorr, Karen;Yang, Xiao;Wu, Xiushan
    • BMB Reports
    • /
    • 제44권2호
    • /
    • pp.123-128
    • /
    • 2011
  • Leucine-rich repeat containing protein 10 (LRRC10) is characterized as a cardiac-specific gene, suggesting a role in heart development and disease. A severe cardiac morphogenic defect in zebrafish morphants was recently reported but a contradictory result was found in mice, suggesting a more complicated molecular mechanism exists during mouse embryonic development. To elucidate how LRRC10 is regulated, we analyzed the 5'enhancer region approximately 3 kilo bases (kb) upstream of the Lrrc10 start site using luciferase reporter gene assays. Our characterization of the Lrrc10 promoter indicates it possesses complicated cis-and trans-acting elements. We show that GATA4 and MEF2C could both increase transcriptional activity of Lrrc10 promoter individually but that they do not act synergistically, suggesting that there exists a more complex regulation pattern. Surprisingly, knockout of Gata4 and Mef2c binding sites in the 5’enhancer region (-2,894/-2,889) didn't change the transcriptional activity of the Lrrc10 promoter and the likely GATA4 binding site identified was located in a region only 100 base pair (bp) upstream of the promoter. Our data provides insight into the molecular regulation of Lrrc10 expression, which probably also contributes to its tissue-specific expression.

Long Noncoding RNA MHRT Protects Cardiomyocytes against H2O2-Induced Apoptosis

  • Zhang, Jianying;Gao, Caihua;Meng, Meijuan;Tang, Hongxia
    • Biomolecules & Therapeutics
    • /
    • 제24권1호
    • /
    • pp.19-24
    • /
    • 2016
  • Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. The exploration of new biomarkers with high sensitivity and specificity for early diagnosis of AMI therefore becomes one of the primary task. In the current study, we aim to detect whether there is any heart specific long noncoding RNA (lncRNA) releasing into the circulation during AMI, and explore its function in the neonatal rat cardiac myocytes injury induced by $H_2O_2$. Our results revealed that the cardiac-specific lncRNA MHRT (Myosin Heavy Chain Associated RNA Transcripts) was significantly elevated in the blood from AMI patients compared with the healthy control ($^*p<0.05$). Using an in vitro neonatal rat cardiac myocytes injury model, we demonstrated that lncRNA MHRT was upregulated in the cardiac myocytes after treatment with hydrogen peroxide ($H_2O_2$) via real-time RT-PCR (qRT-PCR). Furthermore, we knockdowned the MHRT gene by siRNA to confirm its roles in the $H_2O_2$-induced cardiac cell apoptosis, and found that knockdown of MHRT led to significant more apoptotic cells than the non-target control ($^{**}p<0.01$), indicating that the lncRNA MHRT is a protective factor for cardiomyocyte and the plasma concentration of MHRT may serve as a biomarker for myocardial infarction diagnosis in humans AMI.