• Title/Summary/Keyword: Carcinogenicity

Search Result 202, Processing Time 0.024 seconds

Network Analysis of microRNAs, Genes and their Regulation in Mantle Cell Lymphoma

  • Deng, Si-Yu;Guo, Xiao-Xin;Wang, Ning;Wang, Kun-Hao;Wang, Shang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.457-463
    • /
    • 2015
  • The pathogenesis of mantle cell lymphoma, a special subtype of lymphoma that is invasive and indolent and has a median survival of 3 to 4 years, is still partially unexplained. Much research about genes and miRNAs has been conducted in recent years, but interactions and regulatory relations of genetic elements which may play a vital role in genesis of MCL have attracted only limited attention. The present study concentrated on regulatory relations about genes and miRNAs contributing to MCL pathogenesis. Numerous experimentally validated raw data were organized into three topology networks, comprising differentially expressed, associated and global examples. Comparison of similarities and dissimilarities of the three regulating networks, paired with the analysis of the interactions between pairs of elements in every network, revealed that the differentially expressed network illuminated the carcinogenicity mechanism of MCL and the related network further described the regulatory relations involved, including prevention, diagnosis, development and therapy. Three kinds of regulatory relations for host genes including miRNAs, miRNAs targeting genes and genes regulating miRNAs were concluded macroscopically. Regulation of the differentially expressed miRNAs was also analyzed, in terms of abnormal gene expression affecting the MCL pathogenesis. Special regulatory relations were uncovered. For example, auto-regulatory loops were found in the three topology networks, key pathways of the nodes being highlighted. The present study focused on a novel point of view revealing important influencing factors for MCL pathogenesis.

Review of Various Quantitative Methods to Measure Secondhand Smoke (간접흡연의 정량적 노출측정 방법의 고찰)

  • Lim, Soo-Gil;Kim, Joung-Yoon;Lim, Wan-Ryung;Sohn, Hong-Ji;Lee, Ki-Young
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.2
    • /
    • pp.100-115
    • /
    • 2009
  • Secondhand smoke (SHS) is one of major public health threats. Since secondhand smoke is complex mixture of toxic chemicals, there has been no standardized method to measure SHS quantitatively. The purpose of this manuscript was to review various quantitative methods to measure SHS. There are two different methods: air monitoring and biological monitoring. Air monitoring methods include exhaled carbon monoxide level, ambient fine particulates, nicotine and 3-ethenylpyridine. Measurement of fine particulates has been utilized due to presence of real-time monitor, while fine particulates can have multiple indoor sources other than SHS. Ambient nicotine and 3-EP are more specific to SHS, although there is no real-time monitor for these chemicals. Biological monitoring methods include nicotine in hair, cotinine in urine, NNK in urine and DNA adducts. Nicotine in hair can provide chronic internal dose, while cotinine in urine can provide acute dose. Since biological monitoring can provide total internal dose, identification of specific exposure source may be difficult. NNK in urine can indicate carcinogenicity of the SHS exposure. DNA adducts can provide overall cancer causing exposure, but not specific to SHS. While there are many quantitative methods to measure SHS, selection of appropriate method should be based on purposes of assessment. Application of accurate and appropriate exposure assessment method is important for understanding health effects and establishing appropriate control measures.

A Study on the Criteria for Selection of Permitted Standard Substances in the Occupational Safety and Health Act in Korea (산업안전보건법상 허용기준 설정대상 유해인자 선정기준 마련에 관한 연구)

  • Lee, Junghyun;Hahm, Miran;Lee, Eun Jung;Lee, Kwon Seob;Hong, Mun Ki;Byeon, Sang-Hoon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • Objectives: This study aims to suggest definitions in accordance with the purpose of the permissible limit system in order to suggest criteria for substances with permissible exposure limits and expanded candidate substances under the Occupational Safety and Health Act in Korea. Methods: The occupational safety and health related acts from six countries were researched, including from Korea. To understand the health hazards of substances with permissible exposure limits, health hazards were prioritized for 211 substances through working environment measurement on the basis of KOSHA's preceding research. Results: To suggest criteria for substances with permissible exposure limits and expanded candidate substances, definitions were suggested in accordance with the purpose of the permissible limit system. Based on the health hazard priorities for the working environment, selection criteria were identified. Conclusions: Three suggestions for substances with permissible exposure limits were proposed including substances where occurred serious health hazards such as carcinogenicity, germ cell mutagenicity, and reproductive toxicity to workers.

Synergistic Utilization of Dichloroethylene as Sole Carbon Source by Bacterial Consortia Isolated from Contaminated Sites in Africa

  • Olaniran, Ademola O.;Mfumo, Nokukhanya H.;Pillay, Dorsamy;Pillay, Balakrishna
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.205-210
    • /
    • 2006
  • The widespread use and distribution of chloroethylene organic compounds is of serious concern owing to their carcinogenicity and toxicity to humans and wildlife. In an effort to develop active bacterial consortia that could be useful for bioremediation of chloroethylene-contaminated sites in Africa, 16 combinations of 5 dichloroethylene (DCE)-utilizing bacteria, isolated from South Africa and Nigeria, were assessed for their ability to degrade cis- and trans- DCEs as the sole carbon source. Three combinations of these isolates were able to remove up to 72% of the compounds within 7 days. Specific growth rate constants of the bacterial consortia ranged between 0.465 and $0.716\;d^{-1}$ while the degradation rate constants ranged between 0.184 and $0.205\;d^{-1}$ with $86.36{\sim}93.53\;and\;87.47{\sim}97.12%$ of the stoichiometric-expected chloride released during growth of the bacterial consortia in cis- and trans-DCE, respectively. Succession studies of the individual isolates present in the consortium revealed that the biodegradation process was initially dominated by Achromobacter xylosoxidans and subsequently by Acinetobacter sp. and Bacillus sp., respectively. The results of this study suggest that consortia of bacteria are more efficient than monocultures in the aerobic biodegradation of DCEs, degrading the compounds to levels that are up to 60% below the maximum allowable limits in drinking water.

Cancer Chemopreventive Effect of Spirogyra Neglecta (Hassall) Kützing on Diethylnitrosamine-Induced Hepatocarcinogenesis in Rats

  • Thumvijit, Tarika;Taya, Sirinya;Punvittayagul, Charatda;Peerapornpisal, Yuwadee;Wongpoomchai, Rawiwan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.4
    • /
    • pp.1611-1616
    • /
    • 2014
  • Spirogyra neglecta, a freshwater green alga, is a local food in the northern and northeastern parts of Thailand. This investigation explored the anticarcinogenicity of S neglecta and its possible cancer chemopreventive mechanisms in rats divided into 14 groups. Groups 1 and 10 served as positive and negative control groups, respectively. Groups 1-9 were intraperitoneally injected with diethylnitrosamine (DEN) once a week for 3 weeks. Groups 10-14 received normal saline instead. One week after the last DEN injection, groups 2-5 were administered for 9 consecutive weeks various doses of S neglecta extract (SNE) and dried S neglecta (SND), mixed with basal diet. Groups 6-9 and 11-14 similarly were administered various doses of SNE and SND starting from the first week of the experiment. Administration of SNE and SND was not associated with formation of glutathione-Stransferase placental form (GST-P) positive foci in rat liver. SNE and SND during initiation phase significantly reduced the number of GST-P positive foci in rats injected with DEN. The number of GST-P also diminished in groups treated with SNE and SND after injection with DEN, except for the low dose extract group. SNE showed stronger anticarcinogenic potency than SND. Furthermore, SNE also decreased the number of Ki-67 positive cells. However, the numbers of TUNEL-positive cells in the liver of the SNE-treated groups were not statistically different from the controls. The GST activity in 50 mg/kg bw of SNE and 1% of SND groups was significantly increased as compared to the positive control. In conclusion, Spirogyra neglecta (Hassall) K$\ddot{u}$tzing showed cancer chemopreventive properties at the early stages of diethylnitrosamine-induced hepatocarcinogenesis in rats. Possible inhibitory mechanisms include enhancement of the activities of some detoxifying enzymes and/or suppression of precancerous cells.

Polycyclic Aromatic Hydrocarbons (PAHs) and their Bioaccessibility in Meat: a Tool for Assessing Human Cancer Risk

  • Hamidi, Elliyana Nadia;Hajeb, Parvaneh;Selamat, Jinap;Razis, Ahmad Faizal Abdull
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.15-23
    • /
    • 2016
  • Polycyclic aromatic hydrocarbons (PAHs) are primarily formed as a result of thermal treatment of food, especially barbecuing or grilling. Contamination by PAHs is due to generation by direct pyrolysis of food nutrients and deposition from smoke produced through incomplete combustion of thermal agents. PAHs are ubiquitous compounds, well-known to be carcinogenic, which can reach the food in different ways. As an important human exposure pathway of contaminants, dietary intake of PAHs is of increasing concern for assessing cancer risk in the human body. In addition, the risks associated with consumption of barbecued meat may increase if consumers use cooking practices that enhance the concentrations of contaminants and their bioaccessibility. Since total PAHs always overestimate the actual amount that is available for absorption by the body, bioaccessibility of PAHs is to be preferred. Bioaccessibility of PAHs in food is the fraction of PAHs mobilized from food matrices during gastrointestinal digestion. An in vitro human digestion model was chosen for assessing the bioaccessibility of PAHs in food as it offers a simple, rapid, low cost alternative to human and animal studies; providing insights which may not be achievable in in vivo studies. Thus, this review aimed not only to provide an overview of general aspects of PAHs such as the formation, carcinogenicity, sources, occurrence, and factors affecting PAH concentrations, but also to enhance understanding of bioaccessibility assessment using an in vitro digestion model.

Mechanisms of Cadmium Carcinogenicity in the Gastrointestinal Tract

  • Bishak, Yaser Khaje;Payahoo, Laleh;Osatdrahimi, Alireza;Nourazarian, Alireza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.9-21
    • /
    • 2015
  • Cancer, a serious public health problem in worldwide, results from an excessive and uncontrolled proliferation of the body cells without obvious physiological demands of organs. The gastrointestinal tract, including the esophagus, stomach and intestine, is a unique organ system. It has the highest cancer incidence and cancer-related mortality in the body and is influenceed by both genetic and environmental factors. Among the various chemical elements recognized in the nature, some of them including zinc, iron, cobalt, and copper have essential roles in the various biochemical and physiological processes, but only at low levels and others such as cadmium, lead, mercury, arsenic, and nickel are considered as threats for human health especially with chronic exposure at high levels. Cadmium, an environment contaminant, cannot be destroyed in nature. Through impairment of vitamin D metabolism in the kidney it causes nephrotoxicity and subsequently bone metabolism impairment and fragility. The major mechanisms involved in cadmium carcinogenesis could be related to the suppression of gene expression, inhibition of DNA damage repair, inhibition of apoptosis, and induction of oxidative stress. In addition, cadmium may act through aberrant DNA methylation. Cadmium affects multiple cellular processes, including signal transduction pathways, cell proliferation, differentiation, and apoptosis. Down-regulation of methyltransferases enzymes and reduction of DNA methylation have been stated as epigenetic effects of cadmium. Furthermore, increasing intracellular free calcium ion levels induces neuronal apoptosis in addition to other deleterious influence on the stability of the genome.

Phytonutrient Effects of Date Pit Extract against Azoxymethane-Induced Oxidative Stress in the Rat Colon

  • Waly, Mostafa Ibrahim;Al-Ghafri, Bushra Rashid;Guizani, Nejib;Rahman, Mohammad Shafiur
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3473-3477
    • /
    • 2015
  • Plants and their by-products offer a diverse mixture of chemical constituents like natural antioxidants. Date-pits are rich in phenolic compounds that have antioxidant potential. The main objective of this study was to investigate the protective effect of a date-pit extract (DPE) against AOM-induced colonic carcinogenicity and oxidative stress. Thirty-two weanling male Sprauge-Dawley rats were randomly divided into four groups (eight rats in each group). All rats were fed basic diet and water ad libitum, and randomly distributed per treatment groups as follows: negative controls injected with normal saline once a week for two weeks, a cancer group injected intra-peritoneally with azoxymethane (15mg/kg body weight) for two consecutive weeks, and DPE treated groups receiving the extract via the oral route (1.5ml/day) for the entire experiment in the presence or absence of AOM injection. Results showed that DPE contained phytonutrients that were capable of inhibiting chemically-induced oxidative stress in the rat colonic cells. In those animals that consumed DPE, a protective effect was observed against AOM-induced oxidative stress in rat colonic cells as evident by a significant decrease in MDA and oxidized DCF formation in AOM injected and DPE fed groups. It is concluded that DPE has potential antioxidant and anticarcinogenic properties.

Proton Pump Inhibitors and Helicobacter Pylori-Associated Pathogenesis

  • Hagiwara, Tadashi;Mukaisho, Ken-Ichi;Nakayama, Takahisa;Hattori, Takanori;Sugihara, Hiroyuki
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1315-1319
    • /
    • 2015
  • The fact that long-term use of proton pump inhibitors (PPIs) aggravates corpus atrophic gastritis in patients with Helicobacter pylori infection has been proven clinically and experimentally. Corpus atrophic gastritis is a known risk factor for gastric cancer. Therefore, gastric neoplasia might be associated with the long-term use of PPIs. One of the causes of worsening corpus atrophic gastritis, leading to the development of adenocarcinoma, might be bacterial overgrowth under conditions of hypochlorhydria. The production of potentially carcinogenic N-nitrosocompounds by nitrosating organisms under conditions of hypochlorhydria might be associated with carcinogenesis. Interactions between bile acids, pH, and H. pylori might also contribute to carcinogenicity, especially in patients with gastro-esophageal reflux disease (GERD). The concentration of soluble bile acids, which have bactericidal or chemorepellent properties toward H. pylori, in gastric contents is considerably higher in patients undergoing continuous PPI therapy than in healthy individuals with normal acid production. Under these circumstances, H. pylori might colonize the stomach body rather than the pyloric antrum. Hypergastrinemia induced by PPI administration might promote the development of gastric cancer. Because the main cause of corpus atrophic gastritis is H. pylori infection, and not PPI administration, H. pylori infection should be eradicated before starting long-term PPI therapy.

Lack of Detection of the Mouse Mammary Tumor-like Virus (MMTV) Env Gene in Iranian Women Breast Cancer using Real Time PCR

  • Tabriz, Hedieh Moradi;Zendehdel, Kazem;Shahsiah, Reza;Fereidooni, Forouzandeh;Mehdipour, Baharak;Hosseini, Zahra Mostakhdemin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2945-2948
    • /
    • 2013
  • Background: Mouse mammary tumor virus (MMTV) is the major cause of mammary tumors in mice. There is limited controversial evidence about the probable etiologic role of MMTV- like virus in human breast cancer. Materials and Methods: A total of 40 Formalin fixed paraffin embedded samples with diagnosis of breast cancer were collected in a period of 3 years from cancer institute of Iran. We selected both pre-menopausal and post-menopausal patients with different histologic grades and different ethnic groups. We evaluated presence of MMTV-like virus env gene through real time PCR method. Results: Forty patients (20 pre and 20 postmenopausal women) were evaluated with the mean age of 49.67. The average tumor size was 39 mm. None of the studied samples were positive for MMTV-like virus env gene target sequences. Conclusions: We found no evidence on the potential role of MMTV-like virus in the carcinogenicity of breast cancer among Iranian women.