• Title/Summary/Keyword: Carboxyl group

Search Result 257, Processing Time 0.03 seconds

Synthesis of Amin-type Anion Exchanger from Acrylic Acid Grafted Polypropylene Nonwoven Fabric and Its Ion-exchange Property(II) (아크릴산 그라프트 폴리프로필렌 부직포로부터 아민형 음이온 교환체의 합성 및 이온교환특성(II))

  • Na, Choon-Ki;Park, Hyun-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.9
    • /
    • pp.775-782
    • /
    • 2009
  • PP-g-AA-Am nonwoven fabric, which possess anionic exchangeable function, was prepared by chemical modification of carboxyl (-COOH) group of PP-g-AA nonwoven fabric to amine ($-NH_2$) group using diethylene triamine (DETA). Its adsorption characteristics for anionic nutrients including isotherm, kinetics and co-anions were studied by batch adsorption experiments. Adsorption equilibriums of $PO_4$-P on PP-g-AA-Am fabric were well described by the Langmuir isotherm model, and their adsorption energies were ranged 10.3 kJ/mol indicating an ion-exchange process as primary adsorption mechanism. The adsorption selectivity of PP-g-AA-Am nonwoven fabric for anions under competition with each other was in following order: $SO_4\;^{2-}$>$PO_4\;^{3-}$>$NO_3\;^-$>$NO_2\;^-$. Also, all results obtained from this study indicate that the $PO_4$-P removal capacity of PP-g-AA-Am nonwoven fabric was extremely superior to that of PA308 anion-exchange resin.

Preparation of Polyester from Wastepaper Liquefied by Ethylene Glycol (Ethylene glycol에 의해 액화된 폐지로부터 polyester 제조)

  • Lee, Dong-Hun;Kim, Chang-Joon;Kim, Sung-Bae
    • KSBB Journal
    • /
    • v.26 no.3
    • /
    • pp.193-198
    • /
    • 2011
  • Polyester was prepared through the esterification reaction between watsepaper liquefied by ethylene glycol and carboxylic acid. Liquefaction was carried out at the previously determined condition of 100 minutes, $160^{\circ}C$, and 3% sulfuric acid, and the hydroxyl value of the liquefied product was 411 mg KOH/g. In order to remove bubbles produced during the curing step, the method to introduce a slight nitrogen stream into reaction vessel and/or the method to preheat a polyester film at $85^{\circ}C$ before curing step were used alone or in combination. But if curing temperature was $130^{\circ}C$, simple method to cure a film for 5 hours at $130^{\circ}C$ without using both methods was found to be most effective. The polyesters prepared with various carboxylic acids showed significant different physical properties, and maleic acid was best among them. Also, the effect of reaction time and temperature, C/H (carboxyl group/hydroxyl group) ratio, and type of additive on the crosslinkage of polyester was investigated. Lithium hydroxide or citric acid as additive was used to enhance the crosslinkage of polyester and citric acid was proved to be much more effective than lithium hydroxide. The effect of reaction temperature on the crosslinkage was marginal, but the crosslinkage decreased above $130^{\circ}C$. The crosslinkage was 86% when the polyester was prepared at an optimum condition such as $130^{\circ}C$ and 15 minutes of reaction condition, 1.5 of C/H ratio, $130^{\circ}C$ and 5 hours of curing condition, and 10% addition of citric acid.

Cloning and Characterization of a Bile Salt Hydrolase from Enterococcus faecalis Strain Isolated from Healthy Elderly Volunteers (사람 분변에서 분리한 Enterococcusfaecalis가 생성하는 BileSaltHydrolase의 특징)

  • Eom, Seok-Jin;Kim, Geun-Bae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.49-54
    • /
    • 2011
  • Bile salt hydrolase (BSH, EC 3.5.1.24) activity, which cleaves amide bond between carboxyl group (bile acid) and amino group (glycine or taurine), is commonly detected in gut-associated species of human and animal. During the screening of BSH active strains from the fecal samples of elderly human volunteers, strain CU30-2 was isolated on the basis of the highly active BSH producing activity. A bsh gene of the isolate was cloned into the pET22b expression vector and overexpressed in Escherichia coli BL21 (DE3) Gold by induction with 1mM IPTG. The overexpressed BSH enzyme with 6x His-tag was purified with apparent homogeneity using a $Ni^+$-NTA agarose column and characterized. The BSH enzyme of E. faecalis CU30-2 exhibited approximately 50 times higher activity against glycol-conjugated bile salts than tauro-conjugated bile salts having the highest activity against glycocholic acid. Considering the prevalence of E. faecalis strains in the human GI tract and glycol-conjugates dominated bile acid composition of human bile, further study is needed to investigate the impact of the BSH activity exerted by E. faecalis strains to the host as well as to the BSH producing strains.

  • PDF

Identification of Fatty Acids in the Oils of Pine Nuts by GC-MS of Their Picolinyl Esters and 4,4-dimethyloxazoline Derivatives in Combination with Silver-Ion Chromatography

  • Kim, Seong-Jin;Woo, Hyo-Kyeng;Seo, Min-Young;Joh, Yong-Goe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.222-244
    • /
    • 2002
  • A mixture of methyl ester derivatives of fatty acids from the oils of pine nuts was well resolved to five fractions differing by degree of unsaturation by silver ion solid-phase extraction column chromatography ($Ag^{+}$-SEC). Polyunsaturated fatty acid with non-methylene interrupted conjugated double bond (NMiDB) radical held more strongly to silver ions in the column than methylene interrupted conjugated double bond (MiDB) one when they had the same number of double bonds. Although both the picolinyl ester and DMOX derivative provided clear mass ion species powerful enough to elucidate the structure of the polyunsaturated fatty acid (PUFA) with NMiDB and/or methylene interrupted conjugated double bond (MiDB) radical in the oils, the picolinyl ester of PUFA with NMiDB radical did not provide a cluster of mass ions neighboring diagnostic mass ions induced by the double bond in the proximal to the carboxyl group. However, the DMOX derivative of PUFA with NMiDB group as well as MiDB showed abundant mass ion species differing by gaps of 12 amu, which made it possible with greater ease to locate the double bonds in the molecule. The oil contained $C_{18:2{\omega}6}$ (46.2 %) and $C_{18:1{\omega}9}$ (25.4 %) as main components, and considerable amounts of PUFAs with NMiDB radical such as ${\Delta}^{5.\;9.\;12}-C_{18:3}$ (16.0 %), ${\Delta}^{5.\;9}-C_{18:2}$ (2.3 %) and ${\Delta}^{5.\;11.\;14}-C_{20:3}$ (0.8 %).

Synthesis of Azelastine.HCl from 4-Chlorophenyl Acetic Acid (4-염화페닐 아세트산을 이용한 염산 아젤라스틴의 합성)

  • Ji, Hyun;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.429-434
    • /
    • 2012
  • A kind of Antihistamines, Azelastine HCl which known as modern H1-blockers, was synthesized by four step process using phthalic anhydride, 4-chlorophenylacetic acid, hydrazine 2HCl. The first step was the reaction of removing carboxyl group and hydroxyl group and the second step was saponification of 3-(4-chlorobenzylidene)phthalide. The third step was the nucleophilic addition reactions of primary amines and the fourth step was addition reaction of N-methyl-1-aza-bicyclo[3,2,0]heptane to 4-(4-chlorobenzyl)-1-(2H)phthalazinone. As a result, product was analyzed by FT-IR and $^1H$-NMR and could be obtained with a yield of 80%.

Self-organized Pullulan/Deoxycholic Acid Nanogels: Physicochemical Characterization and Anti-cancer Drug-releasing Behavior

  • Na, Kun;Park, Kyong-Mi;Jo, Eun-Ae;Lee, Kwan-Shik
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.262-267
    • /
    • 2006
  • The objective of this study was to develop new self-organized nanogels as a means of drug delivery in patients with cancer. Pullulan (PUL) and deoxycholic acid (DOCA) were conjugated through an ester linkage between the hydroxyl group in PUL and the carboxyl group in DOCA. Three types of PUL/DOCA conjugates were obtained, differing in the number of DOCA substitutions (DS; 5, 8, or 11) per 100 PUL anhydroglucose units. The physicochemical properties of the resulting nanogels were characterized by dynamic light scattering, transmission electron microscopy, and fluorescence spectroscopy. The mean diameter of DS 11 was the smallest (approx. 100 nm), and the size distribution was unimodal. To determine the organizing behavior of these conjugates, we calculated their critical aggregation concentrations (CACs) in a 0.01-M phosphate buffered saline solution. They were $10.5{\times}10^{-4}mg/mL,\;7.2{\times}10^{-4} mg/mL,\;and\;5.6{\times}10^{-4} mg/mL$ for DS 5, 8, and 11, respectively. This indicates that DOCA can serve as a hydrophobic moiety to create self-organized nanogels. To monitor the drug-releasing behavior of these nanogels, we loaded doxorubicin (DOX) onto the conjugates. The DOX-loading efficiency increased with the degree of DOCA substitution. The release rates of DOX from PUL/DOCA nanogels varied inversely with the DS. We concluded that the PUL/DOCA nanogel has some potential for use as an anticancer drug carrier because of its low CAC and satisfactory drug-loading capacity.

Flavonoids as Substrates of Bacillus halodurans O-Methyltransferase

  • Jeong, Ki-Woong;Lee, Jee-Young;Kang, Dong-Il;Lee, Ju-Un;Hwang, Yong-Sic;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1311-1314
    • /
    • 2008
  • Bacillus halodurans O-methyltransferase (BhOMT) is an S-adenosylmethionine dependent methyltransferase. In our previous study, three dimensional structure of the BhOMT has been determined by comparative homology modeling and automated docking study showed that two hydroxyl groups at 3'- and 4'-position in Bring and structural rigidity of C-ring resulting from the double bond characters between C2 and C3 of flavonoid, were key factors for interaction with BhOMT. In the present study, BhOMT was cloned and expressed. Binding assay was performed on purified BhOMT using fluorescence experiments and binding affinity of luteolin, quercetin, fisetin, and myricetin were measured in the range of $10^7$. Fluorescence quenching experiments indicated that divalent cation plays a critical role on the metal-mediated electrostatic interactions between flavonoid and substrate binding site of BhOMT. Fluorescence study confirmed successfully the data obtained from the docking study and these results imply that hydroxyl group at 7-position of luteolin, quercetin, fisetin, and myricetin forms a stable hydrogen bonding with K211 and carboxyl oxygen of C-ring forms a stable hydrogen bonding with R170. Hydroxyl group at 3'-and 4'-position in the B-ring also has strong $Ca^{2+}$ mediated electrostatic interactions with BhOMT.

Synthesis of N-Stearyl lactobionamide(N-SLBA) and Preparation of Neo-galactosylated Liposome (N-스테아릴락토비온아미드의 합성과 이를 이용한 리포좀의 제조)

  • Kim, Chong-Kook;Min, Mi-Hong;Min, Kyoung-Hee;Lah, Woon-Ryong;Lee, Bong-Jin;Kim, Yang-Bae
    • YAKHAK HOEJI
    • /
    • v.36 no.2
    • /
    • pp.159-166
    • /
    • 1992
  • A neoglycolipid, N-stearyl lactobionamide(N-SLBA) was synthesized and the incorporation of the neoglycolipid into liposomes was achieved in order to prepare neo-galactosylated liposome as potential drug carrier for active targeting to galactose receptor existing cell and tissue. N-SLBA was synthesized by the covalent linkage between carboxyl group of lactobionic acid and amino group of stearylamine(SA). The yield of N-SLBA was about 52.3%. It was identified with $1650\;cm^{-1}$ in IR chart, 7.5 ppm in NMR spectra, $61^{\circ}C$ endothermic peak in DSC heating curve. Surface-modified large unilamellar vesicle with galactose(N-SLBA-LUV) could be prepared with N-SLBA by reverse evaporation method. N-SLBA-LUV was identified by TEM and measuring of membrane function. The maximum amount of N-SLBA incorporated into liposome is up to about 15 mol%. Compared with control liposome (SA-LUV), N-SLBA-LUV showed lower encapsulation efficiency of MTX. It might due to the loss of positive surface charge of stearylamine. N-SLBA-LUV was similar to SA-LUV in aspect of osmotic behavior. N-SLBA-LUV prepared with N-SLBA would be expected to be a good carrier for active targeting to galactose receptor existing cell and tissue.

  • PDF

Assessment of the Adsorption Capacity of Cadmium and Arsenic onto Paper Mill Sludge Using Batch Experiment (회분식 실험을 통한 제지슬러지의 카드뮴 및 비소 흡착능 평가)

  • Baek, Jongchan;Yeo, Seulki;Park, Junboum;Back, Jonghwan;Song, Youngwoo;Igarashi, T.;Tabelin, C.B.
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.46-53
    • /
    • 2014
  • The purpose of this study is to promote utilization of paper mill sludge as an adsorbent for stabilizing heavy metals in contaminated water by measuring the adsorption capacity of paper mill sludge for cadmium and arsenic. To measure adsorption capacity of paper mill sludge, sorption isotherm experiments were analyzed by Langmuir and Freundlich isotherm models. Also, two methods of chemical modifications were applied to improve the adsorption capacities of paper-mill-sludge: the first method used sodium hydroxide (NaOH), called PMS-1, and the second method used the NaOH and tartaric acid ($C_4H_6O_6$) together, called PMS-2. For Cd adsorption, PMS-1 presented the increase of reactivity while PMS-2 presented the decline of reactivity compared to that of untreated paper-mill-sludge. In case of As adsorption, both PMS-1 and PMS-2 showed the decrease of adsorption capacities. This is because zeta-potential of paper mill sludge was changed to more negative values during chemical modification process due to the hydroxyl group in NaOH and the carboxyl group in $C_4H_6O_6$, respectively. Therefore, we may conclude that the chemical treatment process increases adsorption capacity of paper mill sludge for cation heavy metals such as Cd but not for As.

RGD-Conjugated Chitosan-Pluronic Hydrogels as a Cell Supported Scaffold for Articular Cartilage Regeneration

  • Park, Kyung-Min;Joung, Yoon-Ki;Park, Ki-Dong;Lee, Sang-Young;Lee, Myung-Chul
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.517-523
    • /
    • 2008
  • A RGD (Arg-Gly-Asp) conjugated chitosan hydrogel was used as a cell-supporting scaffold for articular cartilage regeneration. Thermosensitive chitosan-Pluronic (CP) has potential biomedical applications on account of its biocompatibility and injectability. A RGD-conjugated CP (RGD-CP) copolymer was prepared by coupling the carboxyl group in the peptide with the residual amine group in the CP copolymer. The chemical structure of RGD-CP was characterized by $^1H$ NMR and FT IR. The concentration of conjugated RGD was quantified by amino acid analysis (AAA) and rheology of the RGD-CP hydrogel was investigated. The amount of bound RGD was $0.135{\mu}g$ per 1 mg of CP copolymer. The viscoelastic parameters of RGD-CP hydrogel showed thermo-sensitivity and suitable mechanical strength at body temperature for cell scaffolds (a> 100 kPa storage modulus). The viability of the bovine chondrocyte and the amount of synthesized glycosaminoglycans (GAGs) on the RGD-CP hydrogels were evaluated together with the alginate hydrogels as a control over a 14 day period. Both results showed that the RGD-CP hydrogel was superior to the alginate hydrogel. These results show that conjugating RGD to CP hydro gels improves cell viability and proliferation, including extra cellular matrix (ECM) expression. Therefore, RGD conjugated CP hydrogels are quite suitable for a chondrocyte culture and have potential applications to the tissue engineering of articular cartilage tissue.