• Title/Summary/Keyword: Carboxen-1000

Search Result 4, Processing Time 0.019 seconds

A Study on the Performance Optimization of a Continuous Monitoring Method for Hazardous VOCs in the Ambient Atmosphere (환경대기 중 유해성 VOC에 대한 자동연속 측정방법의 성능 최적화에 관한 연구)

  • Son, Eun-Seong;Seo, Young-Kyo;Lee, Dong-Hyun;Lee, Min-Do;Han, Jin-Seok;Baek, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.6
    • /
    • pp.523-538
    • /
    • 2009
  • Recently, there has been a keen demand for real-time automatic monitoring of VOCs not only in Korea but other developed countries. We carried out this study to evaluate and to optimize the performance of a continuous automatic monitoring system for hazardous VOCs (HVOCs) in the ambient atmosphere, using an on-line GC system. The online system normally consisted of a Nafion dryer prior to a cold trap of an automatic thermal desorption apparatus and a GC system equipped with two detectors, i.e. PID and ECD. Preliminary tests conducted to check out any contamination of the system revealed an evidence of significant artifact formation of benzene, and it was found that the Nafion dryer (even brand new one) is the source of the benzene artifact. Thus, all the subsequent experiments in this study was carried out inevitably by removing the Nafion dryer. The on-line GC method was investigated with a variety of QC/QA performance criteria such as repeatability, linearity, lower detection limits, and accuracy. In order to find out the best operating condition for the on-line GC system, three different types (in terms of adsorption strength) of cold trap combinations were tested, i.e. (i) Tenax-TA and Carbopack-B combination (weak and hydrophobic); (ii) Tenax-TA, Carbopack-X and Carboxen-1000 combination (strong and hydrophilic); and (iii) Tenax-TA and Carbopack-X combination (medium and hydrophobic/hydrophilic). The USEPA TO-17 manual method was selected as a reference method to evaluate the performance of the on-line method. A series of experiments revealed that the system performance was superior to others when a cold trap packed with hydrophilic adsorbents (Tenax-TA/Carbopack-X/Carboxen-1000 combination) was used and operated at $25^{\circ}C$. However, the system with a cold trap packed with a combination of Tenax-TA and Carbopack-X is more recommended for field applications since the carboxen-1000 adsorbent is too sensitive to water vapor, and hence the performance of the system might be very unstable to humid samples or during rainy days. Furthermore, the precision and accuracy criteria of the Tenax-TA/ Carbopack-X combination were generally compatible with the triple adsorbents cold trap. The continuous automatic monitoring method is, thus, considered very useful to real-time monitoring to understand the variations of VOCs concentrations in ambient air, as it adopts much simpler procedures in sampling, analysis, and data integration steps than manual monitoring methods. However, it should be noted that there is a high possibility of benzene artifacts formation through the Nafion dryer, which is often installed to remove water vapor in air samples before being adsorbed onto the cold trap. Therefore, if a Nafion dryer is used in any studies of monitoring VOCs, the benzene contamination should be carefully examined before carrying out obtaining the data.

A Study on the Improvement Repeatability and Accuracy of the Analysis Method for SF6 of Trace Level (극미량 수준의 SF6 측정법에 따른 재현성 및 정확도 향상에 관한 연구)

  • Yoo, Heejung;Choe, Hongwoo;Lee, Sepyo;Kim, Jongho;Han, Sangok;Ryoo, Sangboom
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.523-530
    • /
    • 2018
  • Kyoto Protocol, adopted in 1997, set the obligation to reduce $CO_2$, $CH_4$, $N_2O$, HFCs, PFCs, and $SF_6$ in developed countries during 1st promised period. $SF_6$ has been drawing a lot of attention since the Kyoto Protocol because once it is released into the atmosphere, it not only stays in the atmosphere for more than 3,200 years but also emits 22,800 times stronger global warming potential at the same concentrations as $CO_2$ if remains in the atmosphere for 100 years. This study introduces 12 methods for $SF_6$ of measuring trace. $SF_6$ of trace level in the atmosphere correctly, the measurement method was changed and as a result, when the back flush method was applied to the pre-concentration system that used low-temperature concentration and high-temperature desorption system, which used Carboxen-1000 adsorption trap, the effect was the best.

Analysis of Volatile Organic Compounds in Water by Modified Injection Mode for Purge & Trap-GC/MS Method (Purge & Trap-GC/MS 분석법의 주입방식 개선에 의한 물 중의 휘발성 유기물 분석)

  • Jeon, Chi Wan;Lee, Sang Hak;Eum, Chul Hun
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.8
    • /
    • pp.635-642
    • /
    • 1995
  • Improved sample introduction system has been investigated for the determination of volatile organic compounds in water using a purge & trap preconcentration apparatus and a capillary gas chromatography/mass spectrometry. The present limitations associated with the moisture control module and cryorefocusing system suggested by EPA were discussed. To solve the problems such as improper separation of peaks due to the adsorption of water and contamination of purge & trap system, a more efficient connection system between the purge & trap apparatus and the gas chromatograph was introduced and the optimum operational conditions were suggested. A carbopack B/carboxen 1000 and 1001 trap was used for the purge & trap procedure and a custom made crosslinked dimethyldiphenylpolysiloxane capillary column was used for the separation of compounds. Accuracy and precision of the method suggested in this report were examined and the method detection limit of each compound was proposed for the simultaneous determination of 54 volatile organic compounds in water.

  • PDF

Evaluation of Adsorbent Sampling Methods for Volatile Organic Compounds in Indoor and Outdoor Air (실내·외 공기 중 휘발성 유기화합물에 대한 흡착 시료채취 방법의 평가)

  • Baek, Sung-Ok;Moon, Young-Hun
    • Analytical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.496-513
    • /
    • 2004
  • This study was carried out to evaluate the performance of sampling and analytical methodology used for the measurement of toxic volatile organic compounds (VOCs) in the ambient air. VOCs were determined by the adsorbent tube sampling and automatic thermal desorption coupled with GC/MSD analysis. Target analytes were 33 compounds including major aromatic compounds such as BTEX, and halogenated compounds. The methodology was investigated with a wide range of different adsorbents which are commercially available and have been frequently adopted for the VOC measurement. A total of 10 adsorbents were tested in this study: 6 carbon-based adsorbents such as Carbotrap, Carbopack B, Carbosieve S-III, Carboxen 1000, Carbotrap C, Activated Charcoal; and 4 polymer-based adsorbents including Tenax, Porapak Q, Chromosorb 102, and Chromosorb 106. The sampling performance was evaluated with respect to the sampling capacity of VOCs with single-adsorbent and multiple-adsorbents methods for standard samples and field samples. As a result, the best adsorbents for single-adsorbent method in the sampling of toxic organic compounds (including benzene, toluene, xylenes etc.) appeared to be Carbotrap, Carbopack B and Tenax TA. On the other hand, Chromosorb 102, Chromosorb 106 and Porapak Q were found to be unsuitable adsorbents for VOC measurement based on thermal desorption method. Multi-adsorbent packings were evaluated with 4 carbon-based adsorbents, which classified by 3 combination sets of double adsorbents and 2 combination sets of triple adsorbents. The results indicated that the most suitable combination for toixc VOC measurements is Carbotrap C with Carbotrap. Multi-sorbents tubes packed with a strong adsorbent such as Carbosieve S-III or Carboxen 1000 were found to be relatively unsuitable for several compounds, not only owing to the effect of migration of adsorbed compounds from weaker adsorbent to stronger adsorbent, but to hydrophobic nature of the adsorbents. Therefore, it should be addressed that selection of a proper adsorbent (or combination of multi sorbents) is extremely important to obtain reliable data for the concentrations of toxic VOCs in indoor and outdoor environments.