• Title/Summary/Keyword: Carbonic anhydrase I

Search Result 14, Processing Time 0.033 seconds

Immunohistolocalization of Carbonic Anhydrase in Kidney and Intestine of Rainbow Trout, Oncorhynchus mykiss

  • Kim, Soo Cheol;Kim, Jung Woo;Choi, Myeong Rak;Choi, Kap Seong;Kho, Kang Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.1
    • /
    • pp.33-36
    • /
    • 2016
  • Carbonic anhydrase is essential for the cellular transportation of hydrogen and bicarbonate ions and plays a key role in a wide variety of physiological processes. Rainbow trout, Oncorhynchus mykiss is an important freshwater fish in aquaculture industry and is known to be one of the most susceptible species to environmental contamination. In this study, carbonic anhydrase was detected in the kidney and intestine of rainbow trout. Carbonic anhydrase was isolated from cytosolic proteins and identified by using SDS-PAGE, isoelectric focusing, and immunohistochemical methods. A specific protein band with molecular weight of 30 kDa and pI of 7.0 was detected by Western blotting. The immunohistochemical results showed that carbonic anhydrase was located at various cells in the kidney and intestine of rainbow trout.

Detection of Carbonic Anhydrase in the Gills of Rainbow Trout (Oncorhynchus mykiss) (무지개 송어 rainbow trout, Oncorhynchus mykiss의 아가미에서의 carbonic anhydrase의 존재)

  • Kim, Soo Cheol;Choi, Kap Seong;Kim, Jung Woo;Choi, Myeong Rak;Han, Kyeong Ho;Lee, Won Kyo;Kho, Kang Hee
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1557-1561
    • /
    • 2013
  • Carbonic anhydrase isozymes are a widespread, zinc-containing metalloenzyme family. The enzyme catalyzes the reversible inter-conversion of $CO_2$ and $HCO_3$. This reaction is the main role played by CA enzymes in physiological conditions. This enzyme has been found in virtually all organisms, and at least 16 isozymes have been isolated in mammals. Unlike mammals, there is little information available regarding CA isozymes in the tissues of non-mammalian groups, such as fish. Carbonic anhydrase is very important in the osmotic and acid-base regulation in fish. It is well-known that the gills of fish play the most important role in acid-base relevant ion transfer, the transfer of $H^+$ and/or $HCO_3^-$, for the maintenance of systemic pH. Rainbow trout, Oncorhynchus mykiss, is the most important freshwater fish species in the aquaculture industry of Korea, with annual production increasing each year. In addition, environmental toxicology research has shown that rainbow trout is known to be the species that is most susceptible to environmental toxins. Consequently, carbonic anhydrase was detected in rainbow trout, Oncorhynchus mykiss. The isolated protein showed the specific band with a molecular weight of 30 kDa and pI of 7.0, and it was identified as being carbonic anhydrase. The immunohistochemical result demonstrated that the carbonic anhydrase was located in the epithelial cells of the gills.

Presence of Carbonic Anhydrase III-like Protein in Shaggy Sea Raven, Hemitripterus villosus (삼세기(Shaggy sea raven, Hemitripterus villosus)의 carbonic anhydrase III에 관한 연구)

  • Kweon, Rok Eun;Kho, Kang Hee
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.186-190
    • /
    • 2014
  • Carbonic anhydrase isozymes (CAs) are widespread zinc-containing metalloenzyme family. The enzyme catalyzes the reversible interconversion of $CO_2$ and $HCO_3$. This reaction is the main role of CA enzymes in physiological conditions. CA III, one of the CA isozymes, has been identified in many tissues. It is distinguished from the other isozymes by several characteristics, particularly by a lower specific activity and by its resistance to acetazolamide. However, the physiological function of CA III in fish is unknown. In this study, we examined the detection of CAs in the Shaggy sea raven Hemitripterus villosus, using SDS-PAGE, isoelectric focusing (IEF), and western blot analysis. We detected a significant protein band with molecular weight about 30 kDa from the tissues of H. villosus by SDS-PAGE and western blotting. A specific band of CA III with pI 7.0 was detected by IEF and western blotting in gill and muscle. The immunoreaction of anti-CA III expressed in the gill of H. villosus was much stronger than other tissues. One explanation for this result is that the fish gill is the only organ that is exposed to the external environment and that plays an important role in acid-base relevant ion transfer, the transfer of $H^+$ and/or $HCO{_3}^-$, for the maintenance of systemic pH. This is the first report on the identification of a carbonic anhydrase III-like protein from H. villosus.

Development of a Four-way Interface for Online Capillary Isoelectric Focusing-Electrospray-Mass Spectrometry (CIEF-ESI-MS)

  • Yu, Hai Dong;Kim, Byungjoo;Shin, Dae-Ho;Ahn, Seonghee
    • Mass Spectrometry Letters
    • /
    • v.4 no.4
    • /
    • pp.83-86
    • /
    • 2013
  • A new interface for coupling CIEF and MS using a four-way cross has been developed in a single mechanical system. This new interface could be operated without the electric discontinuity and reinstallation of lines. Additionally, a bare fused silica capillary was facilitated as a spray needle to produce electrospray and to guide catholyte or sheath liquid. Focusing for CIEF was completed in a hanging droplet at the end of spray needle. This capillary spray needle also provided stable spray, enhanced the ionization efficiency and increased sensitivity. Results with carbonic anhydrase I showed that focusing and spraying were well completed with the new interface and the new spray needle.

cDNA Cloning and Polymorphism of the Porcine Carbonic Anhydrase III (CA3) Gene

  • Wu, J.;Deng, Changyan;Xiong, Y.Z.;Zhou, D.H.;Lei, M.G.;Zuo, B.;Li, F.E.;Wang, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.324-328
    • /
    • 2006
  • Carbonic anhydrase III (CA3) is a member of a multigene family that encode carbonic anhydrase isozymes. In this study, a complete coding sequence of the pig CA3 gene which encodes a 260 amino-acid protein was determined. The amino acid comparison showed high sequence similarities with previously identified human (86.5%) CA3 gene and mouse (91.5%) Car3 gene. The partial genomic DNA sequences were also investigated. The length of intron 1 was 727 bp. Comparative sequencing of three pig breeds revealed that there was a T${\rightarrow}$C substitution at position 363 within intron 1. The substitution was situated within a NcoI recognition site and was developed as a PCR-restriction fragment length polymorphism (RFLP) marker for further use in population variation investigations and association analysis. Two alleles (A and B) were identified, and 617 bp fragments were observed for the AA genotype and 236 bp and 381 bp fragments for the BB genotype. The polymorphism of CA3 was detected in 8 pig breeds. Allele B was predominant in the Western pig breeds. In addition, association studies of the CA3 polymorphism with carcass traits in 140 $Yorkshire{\times}Meishan$ $F_2$ offspring showed that the NcoI PCR- RFLP genotype may be associated with variation in several carcass traits of interest for pig breeding. Allele B was associated with increases in lean meat percentage, loin eye height and loin eye area. Statistically significant association with backfat thickness was also found; pigs with the AB genotype had much less backfat thickness than AA or BB genotypes.

Analysis of Differentially Expressed Proteins in Bovine Longissimus Dorsi and Biceps Femoris Muscles

  • Kim, S.M.;Park, M.Y.;Seo, K.S.;Yoon, D.H.;Lee, H.-G.;Choi, Y.J.;Kim, S.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1496-1502
    • /
    • 2006
  • Skeletal muscle contains slow and fast twitch fibers. These skeletal muscle fibers express type I and type II myosin, respectively, and these myosin isoenzymes have different ATPase activity. The aim of this study was to investigate protein profiles of bovine skeletal muscles by proteomic analysis. Fifty seven spots of distinct proteins were excised and characterized. The expression of sixteen spots was differed in longissimus dorsi muscle with a minimal 2-fold change compared to biceps femoris muscle. The majority of differentially expressed proteins belonged to metabolic regulation-related proteins such as glyceraldehyde 3-phosphate dehydrogenase, triosephosphate isomerase and carbonic anhydrase 3. The real time-PCR assay confirmed an increase or induction of specific genes: RGS12TS isoform, GAPDH, triosephosphate isomerase and carbonic anhydrase. These results suggest that the expression of metabolic proteins is under a specific control system in different bovine skeletal muscle. These observations could have significant implications for understanding the physiological regulation of bovine skeletal muscles.

Mass Spectrometry Analysis of In Vitro Nitration of Carbonic Anhydrase II

  • Lee, Soo Jae;Kang, Jeong Won;Cho, Kyung Cho;Kabir, Mohammad Humayun;Kim, Byungjoo;Yim, Yong-Hyeon;Park, Hyoung Soon;Yi, Eugene C.;Kim, Kwang Pyo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.709-714
    • /
    • 2014
  • Protein tyrosine nitration is considered as an important indicator of nitrosative stresses and as one of the main factors for pathogenesis of inflammation and neuronal degeneration. In this study, we investigated various nitrosative modifications of bovine carbonic anhydrase II (CAII) through qualitative and semi-quantitative analysis using the combined strategy of Fourier transformation ion cyclotron resonance mass spectrometry (FT-ICR MS) and ion-trap tandem mass spectrometry (IT-MS/MS). FT-ICR MS and its spectra were used for the search of the pattern of nitrosative modifications. Identification of nitrosatively modified tyrosine sites were executed through IT-MS/MS. In addition, we also tried to infer the reason for the site-specific nitrosative modifications in CAII. In view of the above purpose, we have explored- i) the side chain accessibility, ii) the electrostatic environment originated from the acidic/basic amino acid residues neighboring to the nitrosatively modified site and iii) the existence of competing amino acid residues for nitration.

Influence of Juncus decipiens $N_{AKAI}$ on the Renal Function of Dogs (등심초(燈心草)의 개 신장(腎臟) 기능(機能)에 미치는 영향(影響))

  • Moon, Yung-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.6 no.2
    • /
    • pp.101-110
    • /
    • 1975
  • In this study attempts were made to explore effects of the water and alcohol extracts of Junci Herba on the renal function of dogs. The water extract (in a dose 15 mg/kg, i.v.) and alcohol extract (in a dose 1.5 mg/kg, i.v.) elicited a diuretic response and produced a marked diuresis during bicarbonate infusion whereas no diuresis ensues during infusion of hydrochloric acid. The ratios of potassium and sodium excreted in urine $(K^+/Na^+)$, pH of urine, Cosm (osmolar clearance) and $C_{H_2O}$ (free water clearance) increased but hemodynamic states changed little with both extracts. All the observed facts can be best explained on the assumption that Junci Herba inhibits the carbonic anhydrase in the tubule. Thus it produces the effect by increasing urinary potassium and sodium.

  • PDF

Gene Expression Profile of Lung Cancer Cells Following Photodynamic Therapy (폐암 세포주에서 광역학 치료에 의한 유전자 발현 분석)

  • Sung, Ji Hyun;Lee, Mi-Eun;Han, Seon-Sook;Lee, Seung-Joon;Ha, Kwon-Soo;Kim, Woo Jin
    • Tuberculosis and Respiratory Diseases
    • /
    • v.63 no.1
    • /
    • pp.52-58
    • /
    • 2007
  • Background: Photodynamic therapy is a viable option for lung cancer treatment, and many studies have shown that it is capable of inducing cell death in lung cancer cells. However, the precise mechanism of this cell death has not been fully elucidated. To investigate the early changes in cancer cell transcription, we treated A549 cells with the photosensitizer DH-I-180-3 and then we illuminated the cells. Methods: We investigated the gene expression profiles of the the A549 lung cancer cell line, using a DEG kit, following photodynamic therapy and we evaluated the cell viability by performing flow cytometry. We identified the genes that were significantly changed following photodynamic therapy by performing DNA sequencing. Results: The FACS data showed that the cell death of the lung cancer cells was mainly caused by necrosis. We found nine genes that were significantly changed and we identified eight of these genes. We evaluated the expression of two genes, 3-phosphoglycerate dehydrogenase and ribosomal protein S29. The expressed level of carbonic anhydrase XII, clusterin, MRP3s1 protein, complement 3, membrane cofactor protein and integrin beta 1 were decreased. Conclusion: Many of the gene products are membrane-associated proteins. The main mechanism of photodynamic therapy with using the photosensitizing agent DH-I-180-3 appears to be necrosis and this may be associated with the altered production of membrane proteins.

Protein Analysis Using a Combination of an Online Monolithic Trypsin Immobilized Enzyme Reactor and Collisionally-Activated Dissociation/Electron Transfer Dissociation Dual Tandem Mass Spectrometry

  • Hwang, Hyo-Jin;Cho, Kun;Kim, Jin-Young;Kim, Young-Hwan;Oh, Han-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3233-3240
    • /
    • 2012
  • We demonstrated the combined applications of online protein digestion using trypsin immobilized enzyme reactor (IMER) and dual tandem mass spectrometry with collisionally activated dissociation (CAD) and electron transfer dissociation (ETD) for tryptic peptides eluted through the trypsin-IMER. For the trypsin-IMER, the organic and inorganic hybrid monolithic material was used. By employing the trypsin-IMER, the long digestion time could be saved with little or no sacrifice of the digestion efficiency, which was demonstrated for standard protein samples. For three model proteins (cytochrome c, carbonic anhydrase, and bovine serum albumin), the tryptic peptides digested by the IMER were analyzed using LC-MS/MS with the dual application of CAD and ETD. As previously shown by others, the dual application of CAD and ETD increased the sequence coverage in comparison with CAD application only. In particular, ETD was very useful for the analysis of highly-protontated peptide cations, e.g., ${\geq}3+$. The combination approach provided the advantages of both trypsin-IMER and CAD/ETD dual tandem mass spectrometry applications, which are rapid digestion (i.e., 10 min), good digestion efficiency, online coupling of trypsin-IMER and liquid chromatography, and high sequence coverage.