• Title/Summary/Keyword: Carbonates bound metal

Search Result 6, Processing Time 0.02 seconds

Evaluation of Sequential Extraction Techniques for Selected Heavy Metal Speciation in Contaminated Soils

  • Lee, Jin-Ho;Doolittle, James J.;Oh, Byung-Taek
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.3
    • /
    • pp.236-246
    • /
    • 2006
  • In this study, we give insight into questionable results that can be encountered in the conventional sequential extraction of heavy metals (Cd, Cu, and Zn) from soils. Objectives of this study were to determine the extraction variability of exchangeable (EXC)-metals as using six different EXC-extractants commonly accepted, and to investigate selectivity problems with carbonates bound (CAB)-metal fraction, a buffered acetate (1.0 M NaOAc; pH 5.0) extractable-metal fraction, leading to erratic results in especially non-calcareous soils. The contents of EXC-metals were markedly varied with the different extractability of various EXC-metal extractants used. The contents of EXC-Cd fraction were ranged from 2.0 to 74.3% of total Cd content in all of the metal spiked soils studied. The contents of EXC-Zn fraction extracted with the different EXC-extractants were varied with soil types, which were from 0.4 to 3.9% of total Zn in the calcareous soils, from 7.6 to 17.9% in the acidic soil, and from 13.6 to 56.8% in the peat soil. However, the contents of EXC-Cu fraction were relatively similar among the applications of different EXC-meal extractants, 0.2 to 2.1 % of total Cu, in all soils tested. Also, these varied amounts of EXC-metal fractions, especially Cd and Zn, seriously impacted the contents of subsequent metal fractions in the procedure. Furthermore, the CAB-Cd, -Cu, and -Zn fractions extracted by the buffered acetate solution were in critical problem. That is, the buffered acetate solution dissolved not only CAB-metals but also metals that bound or occupied to subsequent fractions, especially OXD-metal fraction, in both calcareous and non-calcareous soils. The erratic results of CAB-fraction also seriously impacted the amounts of subsequent metal fractions. Therefore, the conventional sequential extraction should be reconsidered theoretically and experimentally to quantify the target metal fractions or might be progressively discarded.

Chemistry of Carbonate-Sulfur Flux

  • Q. Won Choi;Choi Han;Chang So-Young;Pyun Chong-Hong;Kim Chang-Hong
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1118-1121
    • /
    • 1994
  • Reactions of alkaline metal carbonates with sulfur are investigated in detail. The evolution of CO and a trace of $SO_2$ were observed in the course of reaction with major component of polysulfides. Some evidences that the reaction proceeds with breaking of terminal sulfur-sulfur bond in the sulfur polymer, and forming CO, $SO_2$ and polysulfide are presented. Polysulfides have the role of keeping free sulfur and allow it to react with other chemicals to rather high temperatures.plexes, whereas the binuclear and mononuclear complexes of Mn$^{2+}$ and Co$^{2+}$

Study on the chemical forms of heavy metals in the surface sediments of Ulsan Bay

  • Kim, Young-Bok;Jo, Sun-Young;Jeong, Jong-Hak;Lee, Sung-In;Jeong, Gi-Ho
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.1
    • /
    • pp.69-78
    • /
    • 1998
  • Contents of heavy metals (Cr, Cu, Zn, Cd, and Pb) in the sediments of Ulsan Bay were investigated by the sequential extraction methods that classifies heavy metals into five types of chemical forms: exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter and residual. The analytes were determined by using an ICP-MS. Total Cr concentrations in the sediments were in the range of 41.6-96.4, Cu 60.7-680, Zn 189-1954, Cd 33.1-83.4, and Pb 138-567 mg/kg. Results of sequential fractionation indicates that relatively high proportion $(\~44\%)$ of Cu is associated with organic matter A large proportion of Pb is associated with three types of chemical forms: Fe-Mn oxides, organic matter, and residual. There were significant correlation in concentrations between the exchangeable components and total organic carbons. The heavy metals in the residual phase cannot be easily released to the environment since these are bound to the crystal lattice. But, reducible and organic Phases cfn a significant amount of most heavy metals. Therefore. there is potential danger of a substantial amount of metals becoming chemically mobile with environmental changes.

  • PDF

Study on the chemical forms of heavy metals in the surface sediments of Ulsan Bay

  • Young Bok Kim;Sun
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.69-78
    • /
    • 1993
  • Contents of heavy metals (Cr, Cu, Zn, Cd, and Pb) in the sediments of Ulsan Bay were investigated by the sequential extraction methods that classifies heavy metals into five types of chemical forms: exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter and residual. The analyses were determined by using an ICP-MS. Total Cr concentrations in the sediments were in the range of 41.6-96.4, Cu 60.7-680, Zn 189-1954, Cd 33.1-83.4, and Pb 138-567 mg/kg. Results of sequential fractionation indicates that relatively high proportion ( ~44%) of Cu is associated with organic matter. A large proportion of Pb is associated with three types of chemical forms: Fe-Mn oxides, organic matter, and residual. There were significant correlation in concentrations between the exchangeable components and total organic carbons. The heavy metals In the residual phase cannot be easily released to the environment since these are bound to the crystal lattice. But, reducible and organic Phases con a significant amount of most heavy metals. Therefore, there is Potential dancer of a substantial amount of metals becoming chemically mobile with environmental changes.

  • PDF

Trace Metal Contamination and Solid Phase Partitioning of Metals in National Roadside Sediments Within the Watershed of Hoidong Reservoir in Pusan City (부산시 회동저수지 집수분지 내 국도도로변 퇴적물의 미량원소 오염 및 존재형태)

  • Lee Pyeong-Koo;Kang Min-Joo;Youm Seung-Jun;Lee In-Gyeong;Park Sung-Won;Lee Wook-Jong
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.20-34
    • /
    • 2006
  • This study was undertaken to assess the anthropogenic impact on trace metal concentrations (Zn, Cu, Pb, Cr, Ni, and Cd) of roadside sediments (N = 70) from No.7 national road within the watershed of Hoidong Reservoir in Pusan City and to estimate the potential mobility of selected metals using sequential extraction. We generally found high concentrations of metals, especially Zn, Cu and Pb, affected by anthropogenic inputs. Compared to the trace metal concentrations of uncontaminated stream sediments, arithmetic mean concentrations of roadside sediments were about 7 times higher for Cu, 4 times higher for Zn, 3 times higher for Pb and Cr and, 2 times higher for Ni and As. Speciation data on the basis of sequential extraction indicate that most of the trace metals considered do not occur in significant quantities in the exchangeable fraction, except for Cd and Ni whose exchangeable fractions are appreciable (average 29.3 and 25.8%, respectively). Other metals such as Zn (51.4%) and Pb (45.2%) are preferentially bound to the reducible fraction, and therefore they can be potentially released by a pH decrease and/or redox change. Copper is mainly found in the organic fraction, while Cd is highest in the exchangeable fraction, and Cr and Ni in the residual fraction. Considering the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals probably decreases in the order of Cd>Ni>Pb>Zn>Cr>Cu. Although the total concentration data showed that Zn was typically present in potentially harmful concentration levels, the data on metal partitioning indicated that Cd, Ni and Pb pose the highest potential hazard for runoff water. As potential changes of redox state and pH may remobilize the metals bound to carbonates, amorphous oxides, and/or organic matter, and may release and flush them through drain networks into the watershed of Hoidong Reservoir, careful monitoring of environmental conditions appears to be very important.

Environmental effects from Natural Waters Contaminated with Acid Mine Drainage in the Abandoned Backun Mine Area (백운 폐광산의 방치된 폐석으로 인한 주변 수계의 환경적 영향)

  • 전서령;정재일;김대현
    • Economic and Environmental Geology
    • /
    • v.35 no.4
    • /
    • pp.325-337
    • /
    • 2002
  • We examined the contamination of stream water and stream sediments by heavy metal elements with respect to distance from the abandoned Backun Au-Ag-Cu mine. High contents of heavy metals (Pb, Zn, Cu, Cd, Mn, and Fe) and aluminum in the waters connected with mining and associated deposits (dumps, tailings) reduce water quality. In the mining area, Ca and SO$_4$ are predominant cation and anion. The mining water is Ca-SO$_4$ type and is enriched in heavy metals resulted from the weathering of sulfide minerals. This mine drainage water is weakly acid or neutral (pH; 6.5-7.1) because of neutralizing effect by other alkali and alkaline earth elements. The effluent from the mine adit is also weakly acid or neutral, and contains elevated concentrations of most elements due to reactions with ore and gangue minerals in the deposit. The concentration of ions in the Backun mining water is high in the mine adit drainage water and steeply decreased award to down stream. Buffering process can be reasonably considered as a partial natural control of pollution, since the ion concentration becomes lower and the pH value becomes neutralized. In order to evaluate mobility and bioavailability of metals, sequential extraction was used for stream sediments into five operationally defined groups: exchangeable, bound to carbonates, bound to FeMn oxide, bound to organic matter, and residual. The residual fraction was the most abundant pool for Cu(2l-92%), Zn(28-89%) and Pb(23-94%). Almost sediments are low concentrated with Cd(2.7-52.8 mg/kg) than any other elements. But Cd dominate with non stable fraction (68-97%). Upper stream sediments are contaminated with Pb, and down area sediments are enriched with Zn. It is indicate high mobility of Zn and Cd.