Nanocrystalline transient aluminas (${\gamma}$-alumina) were coated on core particles (${\gamma}$-alumina) by a carbonate precipitation and thermal-assisted combustion, which is environmentally friend. The ammonium aluminum carbonate hydroxide (AACH) as a precursor for coating of transient aluminas was produced from precipitation reaction of ammonium aluminum sulfate and ammonium hydrogen carbonate. The crystalline size and morphology of the synthetic, AACH, were greatly dependent on pH and temperature. AACH with a size of 5 nm was coated on the core alumina particle at pH 9. whereas rod shape and large agglomerates were coated at pH 8 and 11, respectively. The AACH was tightly bonded coated on the core particle due to formation of surface complexes by the adsorption of carbonates, hydroxyl and ammonia groups on the surface of the core alumina powder. The synthetic precursor successfully converted to amorphous- and ${\gamma}$-alumina phase at low temperature through decomposition of surface complexes and thermal-assisted phase transformation.
Dhami, Navdeep Kaur;Reddy, M. Sudhakara;Mukherjee, Abhijit
Journal of Microbiology and Biotechnology
/
v.23
no.5
/
pp.707-714
/
2013
Microbially induced calcium carbonate precipitation (MICCP) is a naturally occurring biological process that has various applications in remediation and restoration of a range of building materials. In the present investigation, five ureolytic bacterial isolates capable of inducing calcium carbonate precipitation were isolated from calcareous soils on the basis of production of urease, carbonic anhydrase, extrapolymeric substances, and biofilm. Bacterial isolates were identified as Bacillus megaterium, B. cereus, B. thuringiensis, B. subtilis, and Lysinibacillus fusiformis based on 16S rRNA analysis. The calcium carbonate polymorphs produced by various bacterial isolates were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X ray diffraction, and Fourier transmission infra red spectroscopy. A strain-specific precipitation of calcium carbonate forms was observed from different bacterial isolates. Based on the type of polymorph precipitated, the technology of MICCP can be applied for remediation of various building materials.
Qi, Yongshuai;Gao, Yufeng;Meng, Hao;He, Jia;Liu, Yang
Geomechanics and Engineering
/
v.29
no.1
/
pp.79-90
/
2022
Soybean-urease induced carbonate precipitation (EICP), as an alternative to microbially induced carbonate precipitation (MICP), was employed for soil improvement. Meanwhile, soluble calcium produced from industrial waste carbide slag powder (CSP) via the acid dissolution method was used for the EICP process. The ratio of CSP to the acetic acid solution was optimized to obtain a desirable calcium concentration with an appropriate pH. The calcium solution was then used for the sand columns test, and the engineering properties of the EICP-treated sand, including unconfined compressive strength, permeability, and calcium carbonate content, were evaluated. Results showed that the properties of the biocemented sand using the CSP derived calcium solution were comparable to those using the reagent grade CaCl2. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed that spherical vaterite crystals were mainly formed when the CSP-derived calcium solution was used. In contrast, spherical calcite crystals were primarily formed as the reagent grade CaCl2 was used. This study highlighted that it was effective and sustainable to use soluble calcium produced from CSP for the EICP process.
Studies of preparation condition and characteristics of AUC(ammonium uranyl carbonate) were carried out to optimize AUC process with different reactor sizes and precipitation methos. As results four types of precipitates with different chemical compositions and morphologies were obtained from the reaction of {{{{ {(NH }_{4 }) { }_{2 } {CO }_{3 } }} with {{{{ {UO }_{2 }( {NO }_{3 }) { }_{2 } }} solution. A phase diagram has been made and crystal structure and chemical composition of each phase have been characterized by using SEM X-ray IR and thermal analysis. It was found that ammonium uranyl carbonate {{{{ {(NH }_{4 }) { }_{4 } {UO }_{2 } {(CO }_{3 }) { }_{3 } }} with monoclinic crystal morphology could be syn-thesized when the mole ratio of in {{{{ {(NH }_{4 }) { }_{2 } {CO }_{3 }/ {UO }_{2 } {(NO }_{3 }) { }_{2 } }} in the solution was higher than 5 Also a mechanism and a precipitating condition on rounding of the AUC particle were examined in the course of the AUC pre-cipitation. The rounding of the AUC particle was possible only by external circulation using pump not by internal circulation using agitator.
Kim, Daehyeon;Park, Kyungho;Kim, Hochul;Lee, Yonghee
Journal of the Korean GEO-environmental Society
/
v.13
no.5
/
pp.51-57
/
2012
The purpose of study is to understand the possibility of biogrout of soil induced by bacteria. Microbial Calcium Carbonate Precipitation(MCP) has been analysed using the microorganism Bacillus Pasteurii. In order to understand the biogrout of soft ground treated with microbial calcium carbonate precipitation, four types of specimens(sterilization soil, non-sterilization soil, reaction solution and microorganism solution with pre-treatment mix and reaction solution and microorganism solution with post-treatment mix) were made. Scanning Electron Microscope(SEM), EDX and X-ray diffraction(XRD) analyses were performed on the soft ground specimens. On the basis of the preliminary results, it appears that microbial treatment methods using calcium carbonate precipitation may be possible to improve property of biogrout.
Sidik, Waleed S.;Canakci, Hanifi;Kilic, Ibrahim H.;Celik, Fatih
Geomechanics and Engineering
/
v.7
no.6
/
pp.649-663
/
2014
In past few years, the use of bacterial calcium carbonate precipitation (biocementation) has become popular as a ground improvement technique for sandy soil. However, this technique was not applied to organic soil. This study focused on bacterial calcium carbonate precipitation and its effect on permeability in organic soil. A special injection system was prepared for inducing bacterial solution to the samples. The bacterial solution supplied to the samples by gravity for 4 days in specific molds designed for this work. Calcite precipitation was observed by monitoring pH value and measuring amount of calcium carbonate. Change in the permeability was measured before and after biocementation. The test results showed that the pH values indicates that the treatment medium is appropriate for calcite precipitation, and amount of precipitated calcium carbonate in organic soil increased about 20% from untreated one. It was also found that the biocementation can be considered as an effective method for reducing permeability of organic soil. The results were supported by Scanning electron microscopy (SEM) analysis and energy-dispersive x-ray (EDX) analysis.
Coastal erosion is becoming a significant problem in Greece, Bangladesh, and globally. For the prevention and minimization of damage from coastal erosion, combinations of various structures have been used conventionally. However, most of these methods are expensive. Therefore, creating artificial beachrock using local ureolytic bacteria and the MICP (Microbially Induced Carbonate Precipitation) method can be an alternative for coastal erosion protection, as it is a sustainable and eco-friendly biological ground improvement technique. Most research on MICP has been confined to land ureolytic bacteria and limited attention has been paid to coastal ureolytic bacteria for the measurement of urease activity. Subsequently, their various environmental effects have not been investigated. Therefore, for the successful application of MICP to coastal erosion protection, the type of bacteria, bacterial cell concentration, reaction temperature, cell culture duration, carbonate precipitation trend, pH of the media that controls the activity of the urease enzyme, etc., are evaluated. In this study, the effects of temperature, pH, and culture duration, as well as the trend in carbonate precipitation of coastal ureolytic bacteria isolated from two coastal regions in Greece and Bangladesh, were evaluated. The results showed that urease activity of coastal ureolytic bacteria species relies on some environmental parameters that are very important for successful sand solidification. In future, we aim to apply these findings towards the creation of artificial beachrock in combination with a geotextile tube for coastal erosion protection in Mediterranean countries, Bangladesh, and globally, for bio-mediated soil improvement.
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
/
v.10
no.2
/
pp.77-85
/
2012
This study was carried out to remove (/recover) the uranium from the Uranium-bearing Lime Precipitate (ULP). An oxidative dissolution of ULP with carbonate-acidified precipitation and a dissolution of ULP with nitric acid-hydrogen peroxide precipitation were discussed, respectively. In point of view the dissolution of uranium in ULP, nitric acid dissolution which could dissolved more than 98% of uranium was more effective than carbonate dissolution. However, in this case, uranium was dissolved together with a large amount of impurities such as Al, Ca, Fe, Mg, Si, etc. and some impurities were also co-precipitated with uranium during a hydrogen peroxide precipitation. On the other hand, in the case of carbonate dissolution-acidified precipitation, U was dissolved less than 90%. Therefore, it was less effective than nitric acid dissolution for the volume reduction of radioactive solid waste. However, it was very effective to recover the pure uranium, because impurities were hardly dissolved and hardly co-precipitated with uranium.
A number of coated grains (spherical to elongated ones in shape) were collected from a small stream, Dijon, France. They were characterized by typical concentric lamination surrounding broken twigs, and were thus identified as concentric precipitation on plant twigs. Within carbonate coatings of the plant twigs, two morphological groups including, eukaryotic green algae (Vaucheria sp.) and cyanobacteria (Scytonema sp. and Rivularia sp.) were detected, which form carbonate crystals that are surrounding their filaments. The filaments could have triggered carbonate precipitation by photosynthetic removal of $CO_2$ causing the increase of alkalinity of the water, and by supporting their sheaths as nucleation sites. Such encrusted twigs were found from 70 meters downstream, in which temperature and pH were measured as $11.1^{\circ}C$ and 8.18, respectively. These water chemistries ($11.1^{\circ}C$ and pH 8.18), with the aid of microbial photosynthesis, were likely to provide a suitable condition for carbonate precipitation on the twigs.
This study aimed to evaluate the sulfate removal capacity of the enzyme-induced carbonate precipitation (EICP) technique through the chemical precipitation of sulfate with calcium ions. The optimal EICP recipe was obtained to retain the excess calcium cations in the solution for the generation of a sufficient amount of calcium carbonate (CaCO3) mineral. The effect of gypsum precipitation on the EICP-treated sand specimen was investigated by measuring the shear wave velocity and by visual inspection via scanning electron microscopy. The EICP solution using soybean crude urease, as an alternative to laboratory-grade purified urease, exhibited a lower sulfate removal efficiency at a similar CaCO3 production rate compared with the optimal EICP recipe because of soybean impurities.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.