• Title/Summary/Keyword: Carbon-oxygen surface groups

Search Result 118, Processing Time 0.029 seconds

Influence of Oxygen-/Nitrogen-containing Functional Groups on the Performance of Electrical Double-Layer Capacitor (전기이중층 커패시터의 성능에 미치는 산소/질소 함유 관능기들의 영향)

  • Kim, Jieun;Kwon, Young-Kab;Lee, Joong Kee;Choi, Ho-Suk
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1043-1048
    • /
    • 2012
  • In this study, activated carbons (ACs) were modified as electrode materials for an electric double layer capacitor (EDLC) by controlling oxygen- and nitrogen-containing functional groups. The morphological and chemical properties of ACs were analyzed through scanning electron microscopy (SEM), fourier transform infrared (FTIR) spectrometer, automatic elemental analyzer (EA) and Boehm titration. Also, charge/discharge tests were performed to investigate the EDLC performance. Oxygen- and nitrogen-containing functional groups were introduced on the surface of ACs through acid and urea treatments, respectively. ACs with nitrogen-containing functional groups showed 2 mA increase of gravimetric discharge capacity and quick achievement of maximum charge/discharge performance. However, ACs with oxygen-containing functional groups showed low discharge capacity and its gradual decrease during further cyclic test, since the functional groups interrupted adsorption/desorption of charges in the electrolyte on the surface of ACs.

Study of the Adsorbent-Adsorbate Interactions from Cd(II) and Pb(II) Adsorption on Activated Carbon and Activated Carbon Fiber

  • Kim, Dae Ho;Kim, Doo Won;Kim, Bo-Hye;Yang, Kap Seung;Lim, Yong-Kyun;Park, Eun Nam
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.1
    • /
    • pp.104-108
    • /
    • 2013
  • The adsorption characteristics of Cd(II) and Pb(II) in aqueous solution using granular activated carbon (GAC), activated carbon fiber (ACF), modified ACF (NaACF), and a mixture of GAC and NaACF (GAC/NaACF) have been studied. The surface properties, such as morphology, surface functional groups, and composition of various adsorbents were determined using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) measurements. The specific surface area, total pore volume, and pore size distribution were investigated using nitrogen adsorption, Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) methods. In this study, NaACF showed a high adsorption capacity and rate for heavy metal ions due to the improvement of its ion-exchange capabilities by additional oxygen functional groups. Moreover, the GAC and NaACF mixture was used as an adsorbent to determine the adsorbent-adsorbate interaction in the presence of two competitive adsorbents.

Electro-catalytic Performance of PtRu Catalysts Supported on Urea-treated MWNTs for Methanol Oxidation

  • Park, Jeong-Min;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.159-159
    • /
    • 2009
  • In this work, nitrogen and oxygen functionalities was introduced to the graphite nanofibers (GNFs) and their effect on electrocatalytic performance of the GNF supports for direct methanol fuel cells (DMFCs) was invesigated. The nitrogen and oxygen groups were introduced through the urea treatments and acid treatment, respectively. And, PtRu catalysts deposited on modified GNFs were prepared by a chemical reduction method. The catalysts were characterized by means of elemental analysis, nitrogen adsorption, and X-ray photoelectron spetroscopy (XPS). The structure and morphological characteristics of the catalysts were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). As a result, the Pt-Ru nanoparticles were impregnated on GNFs with good formation in 3-5 nm. And, the cyclic voltammograms for methanol oxidation revealed that the methanol oxidation peak varied depending on changes of surface functional groups. It was thus considered that the PtRu deposition was related to the reduction of PtRu and surface characteristics of the carbon supports. The changes of surface functional groups were related to PtRu reduction, significantly affect the methanol oxidation activity of anode electrocatalysts in DMFCs.

  • PDF

Gas Adsorption Characteristics of by Interaction between Oxygen Functional Groups Introduced on Activated Carbon Fibers and Acetic Acid Molecules (활성탄소섬유에 도입된 산소작용기와 초산 분자와의 상호작용에 따른 가스 흡착 특성)

  • Song, Eun Ji;Kim, Min-Ji;Han, Jeong-In;Choi, Ye Ji;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.160-166
    • /
    • 2019
  • In this study, oxygen functional groups were introduced on activated carbon fibers (ACFs) by oxygen plasma treatment to improve the adsorption performance on an acetic acid which is a sick house syndrome induced gas. The active species was generated more as the flow rate of the oxygen gas increased during the plasma treatment. For this reason, the specific surface area (SSA) of the ACFs decreased with much more physical and chemical etching. In particular, the SSA of the sample (A-O60) injected with an oxygen gas flow rate of 60 sccm was reduced to about $1.198m^2/g$, which was about 6.95% lower than that of the untreated samples. On the other hand, the oxygen content introduced into the surface of ACFs increased up to 35.87%. Also, the adsorption performance on the acetic acid gas of the oxygen plasma-treated ACFs was improved by up to 43% compared to that of using the untreated ACFs. It is attributed to the formation of the hydrogen bonding due to the dipole moments between acetic acid molecules and oxygen functional groups such as O=C-O introduced by the oxygen plasma treatment.

Cesium Adsorption Properties of Activated Carbon with Oxygen Functional Groups Introduced by Ozonation Treatment (오존 처리에 의해 산소 작용기가 도입된 활성탄소의 세슘 흡착 특성)

  • Eunseon Chae;Chung Gi Min;Chaehun Lim;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.23-28
    • /
    • 2024
  • Cesium is a potential toxic contaminant due to its high solubility, which allows it to easily penetrate the human body and potentially induce cancer or DNA mutations. In this study, oxygen functional groups were introduced on activated carbons (ACs) by ozone treatment to enhance the cesium adsorption capacity. As the ozone treatment time increased, the oxygen content on the ACs surface increased. Subsequently, the electrostatic interaction between ACs and cesium enhanced, resulting in higher cesium ion adsorption efficiency across all samples. In particular, the sample treated with ozone for 7 minutes at an internal ozone concentration of 50000 ppm had roughly 12% greater oxygen functional group content and the highest cesium removal effectiveness (97.6%). Meanwhile, samples treated for 5 minutes showed a 0.3% cesium removal rate difference compared to those treated for 7 minutes, which was caused by the surface chemical similarity of the two samples due to the reactive characteristics of ozone gas. However, the cesium adsorption performance of ozonated activated carbon seems to be mainly influenced by the amount of oxygen functional groups introduced to the surface, although the specific surface area and pore structure of the activated carbon are also important.

Contribution of Carbon Dot Nanoparticles in Electrocatalysis: Development in Energy Conversion Process

  • Jana, Jayasmita;Ngo, Yen-Linh Thi;Chung, Jin Suk;Hur, Seung Hyun
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.220-237
    • /
    • 2020
  • Modern electrochemical energy devices involve generation and reduction of fuel gases through electrochemical reactions of water splitting, alcohol oxidation, oxygen reduction, etc. Initially, these processes were executed in the presence of noble metal-based catalyst that showed low overpotential and high current density. However, its high cost, unavailability, corrosion and related toxicity limited its application. The search for alternative with high stability, durability, and efficiency led scientists towards carbon nanoparticles supported catalysts which has high surface area, good electrical conductivity, tunable morphology, low cost, ease of synthesis and stability. Carbon nanoparticles are classified into two groups based on morphology, one and zero dimensional particles. Carbon nanoparticles at zero dimension, denoted as carbon dots, are less used carbon support compared to other forms. However, recently carbon dots with improved electronic properties have become popular as catalyst as well as catalyst support. This review focused on the recent advances in electrocatalytic activities of carbon dots. The mechanisms of common electrocatalytic reactions and the role of the catalysts are also discussed. The review also proposed future developments and other research directions to overcome current limitations.

Morphologies and surface properties of cellulose-based activated carbon nanoplates

  • Lee, Seulbee;Lee, Min Eui;Song, Min Yeong;Cho, Se Youn;Yun, Young Soo;Jin, Hyoung-Joon
    • Carbon letters
    • /
    • v.20
    • /
    • pp.32-38
    • /
    • 2016
  • In this study, cellulose nanoplates (CNPs) were fabricated using cellulose nanocrystals obtained from commercial microcrystalline cellulose (MCC). Their pyrolysis behavior and the characteristics of the product carbonaceous materials were investigated. CNPs showed a relatively high char yield when compared with MCC due to sulfate functional groups introduced during the manufacturing process. In addition, pyrolyzed CNPs (CCNPs) showed more effective chemical activation behavior compared with MCC-induced carbonaceous materials. The activated CCNPs exhibited a microporous carbon structure with a high surface area of 1310.6 m2/g and numerous oxygen heteroatoms. The results of this study show the effects of morphology and the surface properties of cellulose-based nanomaterials on pyrolysis and the activation process.

Thermal Desorption of Propylamine and XPS Analysis on Surface Modified Activated Carbon Fibers (표면 개질된 활성탄소 섬유의 Propylamine 탈착과 XPS 분석)

  • Kim Byeoung-Ku;Yang Burm-Ho
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.1 s.53
    • /
    • pp.59-67
    • /
    • 2005
  • Activated carbon fiber (ACF) was surface modified by nitric acid to improve the adsorption efficiency of the propylamine. The adsorption amount of propylamine of the modified ACF increased $17\%$ more than that of as-received ACF. Desorption of propylamine from the propylamine saturated ACF was occurred in two steps, the first step started arround $50^{\circ}C$ showing the desorption of physically adsorbed propylamine and the second step started at $200^{\circ}C$ showing the decomposition of chemically adsorbed propylamine. Total desorption amount of propylamine from the modified ACF was larger than that of the as-received ACF because of increased functional groups. The oxygen and nitrogen contents on the modified ACF increased by 1.5 and 3 times compared with the as-received ACF. A part of propylamine adsorbed on ACF formed pyridine-like or pyrrolic structures with 2 carbons exposed on the surface of the ACF. It was found that propylamine reacted with strong or weak acidic functional groups such as -COOH or -OH existed on ACF surface.

Enhanced binding between metals and CNT surface mediated by oxygen

  • Park, Mi-Na;Kim, Byeong-Hyeon;Lee, Gwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.61-61
    • /
    • 2010
  • In the present work, we present the optimized the hybrid structures of carbon nanotubes (CNTs) and metal nanocomposites including Cu, Al, Co and Ni using the first principle calculations based on the density functional theory. Introduction of CNTs into a metal matrix has been considered to improve the mechanical properties of the metal matrix. However, the binding energy between metals and pristine CNTs wall is known to be so small that the interfacial slip between CNTs and the matrix occurs at a relatively low external stress. The application of defective or functionalized CNTs has thus attracted great attention to enhance the interfacial strength of CNT/metal nanocomposites. Herein, we design the various hybrid structures of the single wall CNT/metal complexes and characterize the interaction between single wall CNTs and various metals such as Cu, Al, Co or Ni. First, differences in the binding energies or electronic structures of the CNT/metal complexes with the topological defects, such as the Stone-Wales and vacancy, are compared. Second, the characteristics of functionalized CNTs with various surface functional groups, such as -O, -COOH, -OH interacting with metals are investigated.We found that the binding energy can be enhanced by the surface functional group including oxygen since the oxygen atom can mediate and reinforce the interaction between carbon and metal. The binding energy is also greatly increased when it is absorbed on the defects of CNTs. These results strongly support the recent experimental work which suggested the oxygen on the interface playing an important role in the excellent mechanical properties of the CNT-Cu composite[1].

  • PDF

Effect of Dry Surface Treatment with Ozone and Ammonia on Physico-chemical Characteristics of Dried Low Rank Coal (건조된 저등급 석탄에 대한 건식 표면처리가 물리화학적 특성에 미치는 영향)

  • Choi, Changsik;Han, Gi Bo;Jang, Jung Hee;Park, Jaehyeon;Bae, Dal Hee;Shun, Dowon
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.532-539
    • /
    • 2011
  • The physical and chemical properties of the dried low rank coals (LRCs) before and after the surface treatment using ozone and ammonia were characterized in this study. The contents of moisture, volatiles, fixed carbon and ash consisting of dried LRCs before the surface treatment were about 2.0, 44.8, 44.9 and 8.9%, respectively. Also, it was composed of carbon of 62.66%, hydrogen of 4.33%, nitrogen of 0.94%, oxygen of 27.01% and sulfur of 0.09%. The dried LRCs was surface-treated with the various dry methods using gases such as ozone at room temperature, ammonia at $200^{\circ}C$ and then the dried LRCs before and after the surface treatment were characterized by the various analysis methods such as FT-IR, TGA, proximate and elemental analysis, caloric value, ignition test, adsorption of $H_2O$ and $NH_3-TPD$. As a result, the oxygen content increased and the calorific value, ignition temperature and the contents of carbon and hydrogen relatively decreased because the oxygen-contained functional groups were additionally generated by the surface oxidation with ozone which plays a role as an oxidant. Also, its $H_2O$ adsorption ability got higher because the hydrophilic oxygen-contained functional groups were additionally generated by the surface oxidation with ozone. On the other hand, it was confirmed that the dried LRCs after the surface treatment with $NH_3$ at $200^{\circ}C$ have the decreased oxygen content, but the increased calorific value, ignition temperature and contents of carbon and hydrogen because of the decomposition of oxygen-contained functional groups the on the surface. In addition, the $H_2O$ adsorption ability was lowered bucause the surface of the dried LRCs might be hydrophobicized by the loss of the hydrophilic oxygen-contained functional groups. It was concluded that the various physico-chemical properties of the dried LRCs can be changed by the surface treatment.