• Title/Summary/Keyword: Carbon-ceramic composites

Search Result 138, Processing Time 0.027 seconds

Analysis of Densification Process of Carbon/Carbon Composites with Pitch as an Impregnant

  • Oh, Seh-Min;Park, Yang-Duk
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.240-244
    • /
    • 1998
  • The analytical method was developed to calculate efficiency of densifying carbon/carbon (C/C) composites using coal tar pitch as a matrix precursor at each cyle. Three factors were defined in analyzing the densification process: impregnation efficiency, retention efficiency, and overall densification efficiency. The relationships developed were applied to the experimental results for three densification cycles of C/C composites with pitches as an impregnant to evaluate the factors which may depend on the impregnant and on the route of carbonization. The impregnation efficiency increased with the repeated process cycles whereas the retention efficiency decreased irrespective of the impregnant and carbonization route. Carbonization route P+A+G, in which pressure carbonizationl (P) and graphitization (G) were done before after atmospheric pressure carboniztion (A) respectively, using impregnant of high carbon yields was the most effective method in densifying C/C composites.

  • PDF

Characterization of Metal(Cu, Zn)-Carbon/TiO2 Composites Derived from Phenol Resin and their Photocataytic Effects

  • Oh, Won-Chun;Bae, Jang-Soon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.196-203
    • /
    • 2008
  • Metal-carbon/$TiO_2$ composite photocatalysts were thermally synthesized through the mixing of anatase to metal(Cu, Zn) containing phenol resin in an ethanol solvent coagulation method. The BET surface area increases, with the increase depending on the amount of metal salt used. From SEM images, metal components and carbon derived from phenol resin that contains metal was homogeneously distributed to composite particles with porosity. XRD patterns revealed that metal and titanium dioxide phase can be identified for metal-carbon/$TiO_2$ composites, however, the diffraction peaks of carbon were not observed due to the low carbon content on the $TiO_2$ surfaces and due to the low crystallinity of the amorphous carbon. The results of a chemical elemental analysis of the metal-carbon/$TiO_2$ composites showed that most of the spectra for these samples gave stronger peaks for C, O, treated metal components and Ti metal compared to that of any other elements. According to photocatalytic results, the MB degradation can be attributed to the three types of synergetic effect: photocatalysis, adsorptivity and electron transfer, according to the light absorption between the supporter $TiO_2$, metal species, and carbon layers.

Silicon Nitride Composites with Different Nanocarbon Additives

  • Balazsi, Csaba
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.352-362
    • /
    • 2012
  • This paper explores the use of a variety of carbon nanoparticles to impart electrical, thermal conductivity, good frictional properties to silicon nitride matrices. We used the highly promising types of carbon as carbon nanotubes, exfoliated graphene and carbon black nanograins. A high-efficiency attritor mill has also been used for proper dispersion of second phases in the matrix. The sintered silicon nitride composites retained the mechanical robustness of the original systems. Bending strength as high as 700 MPa was maintained and an electrical conductivity of 10 S/m was achieved in the case of 3 wt% multiwall carbon nanotube addition. Electrically conductive silicon nitride ceramics were realized by using carbon nanophases. Examples of these systems, methods of fabrication, electrical percolation, mechanical, thermal and tribological properties are discussed.

Effect of Fe Contents in Fe-AC/Tio2 Composites on Photodegradation Behaviors of Methylene Blue

  • Oh, Won-Chun;Chen, Ming-Liang;Zhang, Feng-Jun;Jang, Hyun-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.6
    • /
    • pp.324-330
    • /
    • 2008
  • Activated carbon/$TiO_2$ (AC/$TiO_2$) composites modified with different concentrations of Fe were prepared. The $N_2$ adsorption data showed that the composites had decreased surface area compared with the pristine activated carbon. This indicated the blocking of the micropores on the surface of AC, which was further supported by observation via SEM. XRD results showed patterns for the composites and an anatase typed titanium dioxide structure with a small part of rutile in a higher Fe concentration (> 1.0 mol/L). EDX results showed the presence of C and, O, with Ti peaks on the composites of Fe-AC/$TiO_2$ with relatively lower Ti concentration, which may be due to the higher Fe concentration incorporated into the composites. Subsequently, the photocatalytic effects on methylene blue (MB) were investigated. The improved decomposition of MB showed the combined effects of adsorptions and photodegradation. Especially, the composites modified by Fe revealed enhanced photodegradation behaviors of MB.

Formation of a Carbon Interphase Layer on SiC Fibers Using Electrophoretic Deposition and Infiltration Methods

  • Fitriani, Pipit;Sharma, Amit Siddharth;Lee, Sungho;Yoon, Dang-Hyok
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.284-289
    • /
    • 2015
  • This study examined carbon layer coating on silicon carbide (SiC) fibers by utilizing solid-state and wet chemistry routes to confer toughness to the fiber-reinforced ceramic matrix composites, as an alternative to the conventional pyrolytic carbon (PyC) interphase layer. Electrophoretic deposition (EPD) of carbon black nanoparticles using both AC and DC current sources, and the vacuum infiltration of phenolic resin followed by pyrolysis were tested. Because of the use of a liquid phase, the vacuum infiltration resulted in more uniform and denser carbon coating than the EPD routes with solid carbon black particles. Thereafter, vacuum infiltration with controlled variation in phenolic resin concentration, as well as the iterations of infiltration steps, was improvised to produce a homogeneous carbon coating having a thickness of several hundred nanometers on the SiC fiber. Conclusively, it was demonstrated that the carbon coating on the SiC fiber could be achieved using a simpler method than the conventional chemical vapor deposition technique.

Thermal and mechanical properties of C/SiC composites fabricated by liquid silicon infiltration with nitric acid surface-treated carbon fibers

  • Choi, Jae Hyung;Kim, Seyoung;Kim, Soo-hyun;Han, In-sub;Seong, Young-hoon;Bang, Hyung Joon
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.1
    • /
    • pp.48-53
    • /
    • 2019
  • Carbon fiber reinforced SiC composites (C/SiC) have high-temperature stability and excellent thermal shock resistance, and are currently being applied in extreme environments, for example, as aerospace propulsion parts or in high-performance brake systems. However, their low thermal conductivity, compared to metallic materials, are an obstacle to energy efficiency improvements via utilization of regenerative cooling systems. In order to solve this problem, the present study investigated the bonding strength between carbon fiber and matrix material within ceramic matrix composite (CMC) materials, demonstrating the relation between the microstructure and bonding, and showing that the mechanical properties and thermal conductivity may be improved by treatment of the carbon fibers. When fiber surface was treated with a nitric acid solution, the observed segment crack areas within the subsequently generated CMC increased from 6 to 10%; moreover, it was possible to enhance the thermal conductivity from 10.5 to 14 W/m·K, via the same approach. However, fiber surface treatment tends to cause mechanical damage of the final composite material by fiber etching.

Mechanical Properties of Cf/SiC Composite Using a Combined Process of Chemical Vapor Infiltration and Precursor Infiltration Pyrolysis

  • Kim, Kyung-Mi;Hahn, Yoonsoo;Lee, Sung-Min;Choi, Kyoon;Lee, Jong-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.4
    • /
    • pp.392-399
    • /
    • 2018
  • $C_f/SiC$ composites were prepared via a process combining chemical vapor infiltration (CVI) and precursor infiltration pyrolysis (PIP), wherein silicon carbide matrices were infiltrated into 2.5D carbon preforms. The obtained composites exhibited porosities of 20 vol % and achieved strengths of 244 MPa in air at room temperature and 423 MPa at $1300^{\circ}C$ under an Ar atmosphere. Carbon fiber pull-out was rarely observed in the fractured surfaces, although intermediate layers of pyrolytic carbon of 150 nm thickness were deposited between the fiber and matrix. Fatigue fracture was observed after 1380 cycles under 45 MPa stress at $1000^{\circ}C$. The fractured samples were analyzed by transmission electron microscopy to observe the distributed phases.

A Study on the Preparation and Characterization of Carbon Fiber Composite Filter (탄소섬유 복합여과재의 제조 및 물성연구)

  • 이재춘;신경숙;이덕용;김병균;심선자;임연수;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.989-994
    • /
    • 1995
  • Rigid porous carbon fiber composites with the uniform pore size distribution were prepared by vacuum forming from water slurries containing carbonized PAN fibers, a phenolic resin and ceramic binders. The composites were designed to use for highly efficient carbon fiber filters for particulate filtration and gas adsorption. As the as-received carbon fibers of 1mm in length were milled to an approximate average length of 300${\mu}{\textrm}{m}$, modulus of rupture (MOR) of the composite filter was increased from 1MPa to the value larger than 5 MPa. Modulus of rupture (MOR) for the composite filter fabricated using the milled carbon fiber was increased from 5 MPa to 10 MPa as the carbonization temperature of the PAN fiber was raised from 90$0^{\circ}C$ to 140$0^{\circ}C$. The air permeability and an average pore size of the composite filter were increased from 40 to 270cc/min.$\textrm{cm}^2$ and from 35 to 80${\mu}{\textrm}{m}$, respectively, as the apparent porosity increased from 80 to 95%. It was shown that the MOR of the carbon fiber composite filter was dependent primarily on the average length of carbon fiber, carbonization temperature and the type of bonding materials.

  • PDF

Characteristics of Glass/Carbon Fiber Hybrid Composite Using by VARTM (VARTM 공정을 이용한 유리/탄소섬유 하이브리드 복합체의 특성)

  • Han, In-Sub;Kim, Se-Young;Woo, Sang-Kuk;Hong, Ki-Seok;Soe, Doo-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.10 s.293
    • /
    • pp.607-612
    • /
    • 2006
  • In VARTM (Vacuum Assisted Resin Transfer Molding) process, the permeability generally controls the filling time of the resin and it also affects the void characteristics of the fiber composite. In this study, carbon and glass fiber inter-layered hybrid composites (carbon fiber centered stack) with an epoxy matrix were fabricated by VARTM process and evaluated the resin flow and macro void characteristics. The permeability of glass fiber was higher than that of carbon fiber used in this study. Using Darcy's equation, the permeability of hybrid composites could be predicted and experimentally confirmed. After curing, the macro void content of hybrid composites was investigated using image analyzer. The calculated filling time was well agreed with experimental result and the void content was significantly changed in hybrid composites.

Strengthening of C/C Composites through Ceramer Matrix

  • Dhakate, S.R.;Mathur, R.B.;Dhami, T.L.
    • Carbon letters
    • /
    • v.5 no.4
    • /
    • pp.159-163
    • /
    • 2004
  • The polymer-ceramic hybrid, known as 'ceramer', was synthesized by a sol-gel process by incorporating different amount of alkoxide as source of silicon in resorcinol-formaldehyde in presence of basic catalyst to get different percentage of silicon in ultimate carbonized composites. FTIR of the ceramer confirms that it is a network of Si-O-Si, Si-O-$CH_2$ and Si-OH type groups linked with benzene ring. Different amount of silicon in the ceramer exhibits varying temperature of thermal stability and lower coefficient of thermal expansion as compared to pure resorcinol-formaldehyde resin. The lower value of CTE in ceramer is due to existence of silica and resorcinol -formaldehyde in co-continuous phase. Unidirectional composites prepared with ceramer matrix and high-strength carbon fibers show lower value of flexural strength at polymer stage as compared to those prepared with resorcinol-formaldehyde resin. However, after heat treatment to $1450^{\circ}C$, the ceramer matrix composites show large improvement in the mechanical properties, i.e. with 7% silicon in the ceramer, the flexural strength is enhanced by 100% and flexural modulus value by 40% as compared to that of pure resorcinol-formaldehyde resin matrix composites.

  • PDF