• 제목/요약/키워드: Carbon-carbon composite

검색결과 2,826건 처리시간 0.031초

준정적 축 압축하중을 받는 Al/CFRP/GFRP 혼성부재의 에너지흡수 특성 (Energy Absorption Characteristics of the Al/CFRP/GFRP Hybrid Member under Quasi-static Axial Compressive Load)

  • 김선규;허욱;임광희;정종안
    • 한국생산제조학회지
    • /
    • 제21권4호
    • /
    • pp.588-592
    • /
    • 2012
  • This study concentrates the effect of hybridisation on the collapse mode and energy absorption for composite cylinders. The static collapse behavior of laminated(Al/CFRP/GFRP) circular-cylindrical composite shell under quasi-static axial compressive load has been investigated experimentally. Eight different hybrids of laminated(Al/CFRP/GFRP) circular-cylindrical composite shell were fabricated by autoclave. Eight types of composites were tested, namely, Al/carbon fiber/epoxy, Al/glass fiber/epoxy, Al/carbon-carbon-glass/epoxy, Al/carbon-glass-carbon/epoxy, Al/carbon-glass-glass/epoxy, Al/glass-glass-carbon/epoxy, Al/glass-carbon-glass/epoxy and Al/glass-carbon-carbon/epoxy. Collpase modes were highly dominated by the effect of hybridisation. The results also showed that the hybrid member with material sequence of Al-glass-carbon-carbon/epoxy exhibited good energy absorption capability.

Densification of 4D Carbon Fiber Performs with Mesophase Pitch as Matrix-Precursor

  • Joo, Hyeok-Jong;Lee, Jae-Won
    • Carbon letters
    • /
    • 제6권3호
    • /
    • pp.173-180
    • /
    • 2005
  • In this study, AR (aromatic resin) pitch was employed as the matrix-precursor for carbon/carbon composite because it exhibits much higher coke yield than coal tar pitch. As a result, a fabrication process of carbon/carbon composites can be shortened. It has been known that the pitches may cause swolling problem during the carbonization process. In order to restrain the swelling occurrence, a small quantity of carbon black was added to the AR pitch. Due to addition of carbon black the swelling was decreased largely and the perform can be infiltrated with the AR pitch. The densification efficiency of the performs was compared with various matrix-precursors. The coke yield of matrixprecursors, the morphology and the degree of graphitization of carbon matrix were analyzed.

  • PDF

카본섬유 복합재 라미네이트를 적용한 레저용 소형 전기차량의 후륜 업라이트의 구조강도 해석 (Strength Analysis of Rear Upright Laminated with Carbon Fiber Composite for Leisure Purposed Small Electric Car)

  • 장운근
    • 한국산업융합학회 논문집
    • /
    • 제22권3호
    • /
    • pp.273-280
    • /
    • 2019
  • Carbon fiber composite laminate has been widely used in the area of sports applications such as race car, golf club, fishing rods, yacht. In this study, carbon fiber composite laminate was used in the rear upright of leisure purposed small size single-seat electric race car to reduce its unsprung mass of suspension system. The focus of this research is to investigate in finding optimal stacking lay-up of rear upright laminated with carbon fiber composite in the early design phase. Forces transferred from circuit road to rear upright were estimated through MBD(Multi-Body Dynamics)model of the rear suspension geometry. To evaluate the strength of the rear upright laminated with carbon fiber composite which generally behaves in an anisotropic or orthotropic manner, FEA(Finite Element Analysis) model suitable for composite materials was built followed by its strength was evaluated depending on different stacking lay-up. The result showed that Symmetric stacking lay-up [$45^{\circ}/-45^{\circ}/90^{\circ}/0^{\circ}$]s for frontal area and symmetric stacking lay-up with 1mm aluminum core [$45^{\circ}/-45^{\circ}/90^{\circ}/Core$]s for rear area were most suitable of 16 lay-up cases from the side of both strength based on Tasi-wu failure index and weight.

Hybrid 열가소성 복합재료의 압축성형에서 공정변수의 최적화 (Optimization of Processing Parameters of Compression Molding of Hybrid Thermoplastic Composites)

  • 이중희;허석봉;이봉신
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.29-32
    • /
    • 2001
  • The objective of this work was to optimize processing parameters of hybrid thermoplastic composites in compression molding. The mechanical properties of the composites manufactured with various forming conditions were measured to characterize processing parameters. Polypropylene(PP) composites containing randomly oriented long carbon fiber and carbon black were used in this work. The composite materials contained 5%, 10%, 15%, and 20% carbon fiber and 5%, 10%, 15%, 20%, and 25% carbon black by weight. Compression molding was conducted at various mold temperatures. The temperature of the material in the mid-plain was monitored during the forming. Crystallinity was also measured by using XRD. The tensile modulus of the composites increase, with increasing the mold temperature. However, the impact strength of the composites decreases as mold temperature increases.

  • PDF

Effects of Ultraviolet Surface Treatment on Adhesion Strength of Carbon/Epoxy Composite

  • Kim, Jong-Min;Lee, Dai-Gil
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.15-19
    • /
    • 2002
  • In this work, the surface modification of carbon/epoxy composites was investigated using UV (ultraviolet ray) surface treatment to increase adhesion strength between the carbon/epoxy composites and adhesives. After UV surface treatment, XPS (X-ray photoelectron spectroscopy) tests were performed to analyze the surface characteristics of the carbon/epoxy composites. Comparing adhesion strengths with the surface characteristics, the effects of the surface modification of carbon/epoxy composites by UV surface treatments on the adhesion strengths were investigated.

  • PDF

전도성 카본블랙이 충전된 도전성 고분자 복합재료(I): 카본블랙이 전기전도성에 미치는 영향 (Conductive Carbon Block filled Composite(I): The Effect of Carbon Block on the Conductivity)

  • 김진국
    • Elastomers and Composites
    • /
    • 제33권5호
    • /
    • pp.355-362
    • /
    • 1998
  • 전도성 충전제인 카본블랙이 미치는 영향을 올바로 이해하므로서 전도성 카본블랙을 충전하여 도전성 고분자 복합재료를 제조하고자 하였다. 고분자 수지로 ABS(Acrylonitrile Butadiene Styrene copolymer), PC(Polycabonate), PC/ABS 를 사용하여 전도성 카본블랙 3종류를 사용하여 비교하였다. 실험결과 섬유사슬모양의 전도성 카본블랙을 충전한 PC는 상당히 가능성을 보였다.

  • PDF

Plain woven carbon/6061Al 금속복합재료의 제조와 특성분석 (Thin Plate Fabrication and Characterization of Plain Woven Carbon / 6061 Al Composites)

  • 장재준;하동호;엄문광;이상관
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.250-253
    • /
    • 2004
  • Emphasis has been placed on thin plate fabrication of plain woven carbon fabric reinforced Al matrix composites using liquid pressing process. The composite has potential applications for PDP rear plate. The process is to use the low pressure for infiltration of Al melt into plain woven carbon fabric as the Al melt is pressurized directly. The minimum pressure required for the infiltration was calculated from force balance equation, permeability measurements and compaction behavior of carbon fiber. Also, the melting temperature and the holding time have been optimized. In order to measure coefficient of thermal expansion (CTE) of the composites, the thermal strain measurement using strain gage was performed and the thermal conductivity of the composites was measured using laser flash method. The constituent materials of the composite are PAN type carbon fibers as reinforcements and 6061 Al alloys as matrices.

  • PDF

Superharmonic and subharmonic resonances of a carbon nanotube-reinforced composite beam

  • Alimoradzadeh, M.;Akbas, S.D.
    • Advances in nano research
    • /
    • 제12권4호
    • /
    • pp.353-363
    • /
    • 2022
  • This paper presents an investigation about superharmonic and subharmonic resonances of a carbon nanotube reinforced composite beam subjected to lateral harmonic load with damping effect based on the modified couple stress theory. As reinforcing phase, three different types of single walled carbon nanotubes (CNTs) distribution are considered through the thickness in polymeric matrix. The governing nonlinear dynamic equation is derived based on the von Kármán nonlinearity with using of Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. Effects of different patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the frequency-response curves of the carbon nanotube reinforced composite beam are investigated. The results show that volume fraction and the distribution of CNTs play an important role on superharmonic and subharmonic resonances of the carbon nanotube reinforced composite beams.

Development of Carbon Nanotubes and Polymer Composites Therefrom

  • Jain, P.K.;Mahajan, Y.R.;Sundararajan, G.;Okotrub, A.V.;Yudanov, N.F.;Romanenko, A.I.
    • Carbon letters
    • /
    • 제3권3호
    • /
    • pp.142-145
    • /
    • 2002
  • Multiwall carbon nanotubes (MWNT) were produced using the arc-discharge graphite evaporation technique. Composite films were developed using MWNT dispersed in polystirol polymer. In the present work, various properties of the polymeric thin film containing carbon nanotubes were investigated by optical absorption, electrical resistivity and the same have been discussed.

  • PDF

Preparation and characterization of isotropic pitch-based carbon fiber

  • Zhu, Jiadeng;Park, Sang Wook;Joh, Han-Ik;Kim, Hwan Chul;Lee, Sungho
    • Carbon letters
    • /
    • 제14권2호
    • /
    • pp.94-98
    • /
    • 2013
  • Isotropic pitch fibers were stabilized and carbonized for preparing carbon fibers. To optimize the duration and temperature during the stabilization process, a thermogravimetric analysis was conducted. Stabilized fibers were carbonized at 1000, 1500, and $2000^{\circ}C$ in a furnace under a nitrogen atmosphere. An elemental analysis confirmed that the carbon content increased with an increase in the carbonization temperature. Although short graphitic-like layers were observed with carbon fibers heat-treated at 1500 and $2000^{\circ}C$, Raman spectroscopy and X-ray diffraction revealed no significant effect of the carbonization temperature on the crystalline structure of the carbon fibers, indicating the limit of developing an ordered structure of isotropic pitch-based carbon fibers. The electrical conductivity of the carbonized fiber reached $3.9{\times}10^4$ S/m with the carbonization temperature increasing to $2000^{\circ}C$ using a four-point method.