• Title/Summary/Keyword: Carbon-carbon composite

Search Result 2,840, Processing Time 0.025 seconds

Mechanical Properties of Carbon Nanofiber Reinforced Hybrid Composites (탄소나노섬유가 강화된 하이브리드 복합재료의 기계적 물성)

  • Kong Jin-Woo;Chung Sang-Su;Kim Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.31-34
    • /
    • 2004
  • Carbon nanofiber exhibits superior and often unique characteristics of mechanical, electrical chemical and thermal properties. In this study, For improvement of the mechanical properties of composites, carbon nanofiber reinforced hybrid composites was investigated. For the effect of dispersion, The dispersion methods of solution blending and mechanical mixing were used. The mixing of solution blending method was used using ultrasonic. Dispersion of carbon nanofiber was observed by scanning electron microscope (SEM). Mechanical properties were measured by universal testing Machine (UTM).

  • PDF

산화저항성 향상을 위한 boron 첨가에 따른 2D 탄소/탄소 복합재의 기계적 물성 변화 연구

  • 노백남;이점균;김정일;주혁종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.198-203
    • /
    • 1999
  • 2D carbon/carbon composites have been prepared with and without addition of 1, 3 and 5wt% of oxidation inhibitor boron and then heat teated up to 1700, 2000, 2300, 2600 each. This paper presents the effects of boron on the mechanical properties of 2D C/C composites in terms of the acceleration of graphitization and also discussed about the retardation of air oxidation.

  • PDF

Analysis of conductive mechanism on self-diagnosis FRP (자기진단 FRP의 도전기구 해석)

  • 임현주;이학용;신순기;이준희
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.27-30
    • /
    • 2003
  • In order to apply fracture detection we fabricated the CP-FRP using carbon-powder and analyzed conductive mechanism of it. The composites showed lower initial resistance as the carbon powder and amount of glass fiber(TEX) was used much more. When those are compared with each other that before and after bending test, the more cracks observed in matrix after bending test. We become to know that the conductivity of the composites depends on percolation structure of carbon powder.

  • PDF

Modeling of Thermal Conductivity of Carbon Spun Yarn (탄소 방적사의 열전도도 모델링)

  • Cho Young Jun;Sul In Hwan;Kang Tae Jin;Park Jong Kyoo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.186-189
    • /
    • 2004
  • A thermal model of carbon spun yam is presented. The unit cell of spun carbon yam is divided into a number of volume elements and the local material properties have been given to each element. By using Finite Difference Method (FDM), temperature distribution in the unit cell can be obtained. Effective thermal conductivity of the spun carbon yam unit cell is calculated using the temperature distribution and thermal conductivities of local elements.

  • PDF

Influence of Angle Ply Orientation on the Flexural Strength of Basalt and Carbon Fiber Reinforced Hybrid Composites

  • Mengal, Ali Nawaz;Karuppanan, Saravanan
    • Composites Research
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2015
  • In this paper the influence of fiber orientation of basalt and carbon inter-ply fabrics on the flexural properties of hybrid composite laminates was experimentally investigated. Four types of basalt/carbon/epoxy inter-ply hybrid composite laminates with varying angle ply orientation of reinforced basalt fiber and fixed orientation of carbon fiber were fabricated using hand lay-up technique. Three point bending test was performed according to ASTM 7264. The fracture surface analysis was carried out by scanning electron microscope (SEM). The results obtained from the four laminates were compared. Lay-up pattern of $[0B/+30B/-30B/0C]_S$ exhibits the best properties in terms of flexural strength and flexural modulus. Scanning electron microscopy results on the fracture surface showed that the interfacial de-bonding between the fibers and epoxy resin is a dominant fracture mode for all fiber lay-up schemes.

Thermo-mechanical analysis of carbon nanotube-reinforced composite sandwich beams

  • Ebrahimi, Farzad;Farazamandnia, Navid
    • Coupled systems mechanics
    • /
    • v.6 no.2
    • /
    • pp.207-227
    • /
    • 2017
  • In this paper Timoshenko beam theory is employed to investigate the vibration characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) Beams with a stiff core in thermal environment. The material characteristic of carbon nanotubes (CNT) are supposed to change in the thickness direction in a functionally graded form. They can also be calculated through a micromechanical model where the CNT efficiency parameter is determined by matching the elastic modulus of CNTRCs calculated from the rule of mixture with those gained from the molecular dynamics simulations. The differential transform method (DTM) which is established upon the Taylor series expansion is one of the effective mathematical techniques employed to the differential governing equations of sandwich beams. Effects of carbon nanotube volume fraction, slenderness ratio, core-to-face sheet thickness ratio, different thermal environment and various boundary conditions on the free vibration characteristics of FG-CNTRC sandwich beams are studied. It is observed that vibration response of FG-CNTRC sandwich beams is prominently influenced by these parameters.

Large amplitude forced vibration of functionally graded nano-composite plate with piezoelectric layers resting on nonlinear elastic foundation

  • Yazdi, Ali A.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.203-213
    • /
    • 2018
  • This paper presents a study of geometric nonlinear forced vibration of carbon nano-tubes (CNTs) reinforcement composite plates on nonlinear elastic foundations. The plate is bonded with piezoelectric layers. The von Karman geometric nonlinearity assumptions with classical plate theory are employed to obtain the governing equations. The Galerkin and homotopy perturbation method (HPM) are utilized to investigate the effect of carbon nano-tubes volume fractions, large amplitude vibrations, elastic foundation parameters, piezoelectric applied voltage on frequency ratio and primary resonance. The results indicate that the carbon nano-tube volume fraction, applied voltage and elastic foundation parameters have significant effect on the hardening response of carbon nanotubes reinforced composite (CNTRC) plates.

Development of Carbon Nanofiber Reinforced Cu Matrix Composites Using Liquid Pressing Process (액상 성형 가압법을 이용한 탄소나노섬유 강화 Cu 기지 나노 복합재료 개발)

  • 이상관;김두현;엄문광;하동호;김상식
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.50-53
    • /
    • 2003
  • Carbon nannofiber reinforced Cu matrix composite has potential applications for electrically conducting materials having high strength and electrical conductivity. In this study, we have developed fabrication technology of the nanocomposites using a liquid pressing process. The process is to use the low pressure for infiltration of Cu melt into carbon nanofiber mat as the Cu melt is pressurized directly. The minimum pressure required for infiltration was calculated from force balance equation, permeability measurement and compaction behavior of carbon nanofiber. Also, the melting temperature and the holding time have been optimized.

  • PDF

Controlled Release Behavior of Temperature Responsive Composite Hydrogel Containing Activated Carbon

  • Yun, Ju-Mi;Im, Ji-Sun;Jin, Dong-Hwee;Lee, Young-Seak;Kim, Hyung-Il
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.283-288
    • /
    • 2008
  • The composites of temperature-sensitive hydrogel and activated carbons were prepared in order to improve both the mechanical strength of hydrogel matrix and the loading capacity of drug in a hydrogel drug delivery system. The swelling of composite hydrogel was varied depending on the temperature. Both the swelling and the release behavior of the composite hydrogel were varied depending on the kind of activated carbon. The release behavior showed the high efficiency which is important for practical applications.

Estimation of material properties of carbon nanotube composite applying multi-scale method (다중스케일 기법을 이용한 카본나노튜브 복합재료의 물성치 계산)

  • Kim J.T.;Hyun S.J.;Kim Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.165-168
    • /
    • 2004
  • Carbon nanotube is a geometrical frame-like structure and the primary bonds between two nearest-neighboring atoms act like beam members, whereas an individual atom acts as the joint of the related beam members. The sectional property parameters of these beam members are obtained from molecular mechanics. Computations of the elastic deformation of single-walled carbon nanotubes reveal that the Young's moduli of carbon nanotubes vary with the tube diameter and are affected by their helicity. With increasing tube diameter, the Young's moduli of carbon nanotubes approach the Young's modulus of graphite.

  • PDF