• Title/Summary/Keyword: Carbon-carbon composite

Search Result 2,858, Processing Time 0.029 seconds

Design of Carbon-Glass Hybrid Composite Rebar by the Combined Pultrusion and Winding (풀트루젼과 와인딩 기법을 혼합한 탄소-유리 하이브리드 복합재 보강근 설계)

  • Kweon Jin-Hwe;Choi Soo-Young;Choi Jin-Ho;Lee Sang-Gwan;Park Young-Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.9-12
    • /
    • 2004
  • Presented is a preliminary design concept of the carbon-glass hybrid composite rebars for the application in the construction field. A glass fiber rod with indentation is used for the core of the rebar. Carbon fibers are placed over the glass core by pultrusion. To increase the mechanical locking force and bonding surface, carbon filament windings are added in the hoop direction over the carbon face. Finite element analysis and test were conducted to evaluate the effective stiffness and strength of the rods. The results show that the effective axial stiffness of the rebar with indentation are about $50\%$ of the straight rebar.

  • PDF

Simulation of Complex Permittivity of Carbon Black/Epoxy Composites at Microwave Frequency Band (마이크로파에서의 카본 블랙/에폭시 복합재료의 유전율 모사)

  • Kim J.B.;Kim T.W.;Kim C.G.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.155-160
    • /
    • 2004
  • This paper presents a study on the permittivities of the carbon black/epoxy composite at microwave frequency. The measurements were performed at the frequency band of $1 GHz\~18GHz$. The results show that the complex permittivities of composites depend strongly on the natures and concentrations of the carbon black dispersion. The frequency spectrums of dielectric constants and ac conductivities of composites show the good conformities with descriptions of the percolation theory. The carbon black concentration dependencies do not have conformities with the descriptions of percolation theory and there is no peculiar concentration like percolation threshold, on that concentration, the conductivity of composite jumps up. A new scheme, that is a branch of Lichtenecker-Rother formula, is proposed to obtain a mixing law to describe the complex permittivities of the composites as function frequency and concentration of carbon black.

  • PDF

Dynamic analysis of the micropipes reinforced via the carbon dioxide adsorption mechanism based on the mathematical simulation

  • Liu, Yunye
    • Computers and Concrete
    • /
    • v.30 no.3
    • /
    • pp.185-196
    • /
    • 2022
  • In this paper, the dynamic characteristics of a composite cylindrical beam made of a mechanism of carbon dioxide absorption coated on the tube core are investigated based on the classical beam theory coupled with the modified couple stress theory. The composite tube structures are assumed to be uniform along the tube length, and the energy method regarding the Hamilton principle is utilized for generating the governing equations. A powerful numerical solution, the generalized differential quadrature method (GDQM), is employed to solve the differential equations. The carbon dioxide trapping mechanism is a composite consisting of a polyacrylonitrile substrate and a cross-link polydimethylsiloxane gutter layer. Methacrylate, poly (ethylene glycol), methyl ether methacrylate, and three pedant methacrylates are all taken into account as potential mechanisms for capturing carbon dioxide. The application of the present study is helpful in the design and production of microelectromechanical systems (MEMS) and the different valuable parameters, such as the length-scale parameter, rate of section change, aspect ratio, etc., are presented in detail.

Nonlinear oscillations of a composite microbeam reinforced with carbon nanotube based on the modified couple stress theory

  • M., Alimoradzadeh;S.D., Akbas
    • Coupled systems mechanics
    • /
    • v.11 no.6
    • /
    • pp.485-504
    • /
    • 2022
  • This paper presents nonlinear oscillations of a carbon nanotube reinforced composite beam subjected to lateral harmonic load with damping effect based on the modified couple stress theory. As reinforcing phase, three different types of single walled carbon nanotubes distribution are considered through the thickness in polymeric matrix. The non-linear strain-displacement relationship is considered in the von Kármán nonlinearity. The governing nonlinear dynamic equation is derived with using of Hamilton's principle.The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The frequency response equation and the forced vibration response of the system are obtained. Effects of patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the nonlinear responses of the carbon nanotube reinforced composite beam are investigated.

Fabrication and Applications of Polyphenylene Sulfide (PPS) Composites: A Short Review (폴리페닐렌설파이드(PPS) 복합소재 제조 및 응용)

  • Choi, Minsik;Lee, Jungrok;Ryu, Seongwoo;Ku, Bon-Cheol
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.91-100
    • /
    • 2020
  • Polyphenylene sulfide (PPS) is a semi-crystalline engineering thermoplastic resin that has outstanding thermal stability, mechanical strength, inherent flame retardancy, chemical resistance, and electrical properties. Due to these outstanding properties, it is preferred as a matrix for composite materials. Many studies have been conducted to produce composites with carbon fibers and glass fibers to improve mechanical properties and provide functionality of PPS. In this review paper, we report a brief introduction to the fabrication and applications of PPS composites with carbon nanotubes, graphene, carbon fibers, and glass fibers.

Characteristics of Capacitive Deionization Process using Carbon Aerogel Composite Electrodes (탄소에어로젤 복합전극의 전기용량적 탈이온 공정 특성)

  • Lee, Gi-Taek;Cho, Won-Il;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.2
    • /
    • pp.77-81
    • /
    • 2005
  • Porous-composite electrodes have been developed using silica gel, which reduce carbon aerogel usage with high cost. Silica gel powder was added to the carbon aerogel to simplify the manufacturing procedure and to increase the wet-ability, the mechanical strength and the CDI efficiency. Porous composite electrodes composed of carbon aerogel and silica gel powder were prepared by paste rolling method. Carbon aerosol composite electrodes with $10\times10cm^2$ are placed face to face between spacers, and assembled the four-stage series cells for CDI process. Each stage is composed of 45 cells. Four-stage series cells (flow through cells) for CDI process are put in continuous-system reactor containing 1,000ml-NaCl solution bath of 1,000 ppm. The four-stage series cells with carbon aerogel electrodes are charged at 1.2V and are discharged at 0.001V, and then read the current. Conclusively, removal efficiencies of ions using the four-stage series cells composed of carbon aerogel composite electrodes show good removal efficiency of $99\%$ respectively.

Preparation and Characterization of Mesophase Pitches as a Matrix Precursor of Carbon Fiber Reinforced Carbon Composite (탄소/탄소 복합재 매트릭스 전구체로서의 메조페이스 핏치의 제조 및 특성에 관한 연구)

  • 정현진;임연수
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1387-1393
    • /
    • 1996
  • A study on mesophase pitch as a matrix precursor of carbon fiber reinforced carbon (C/C) composite has been recently presented. This study is concerned with the production of mesophase pitch as matrix precursors for C/C composite from coal tar pitch. A commercial coal tar pitch was heat-treated at 25$0^{\circ}C$ for 2 hours to remove low molecular weight fraction from the pitch then increasing the temperature of the pitch to between 350~45$0^{\circ}C$ to produce mesophase pitch. The pitch was continuously stirred during this time and nitrogen gas was continuously bubbled through the pitch. Spherical and bulk mesophases were formed in the pitch after heat-treatment,. Parent and mesophae pitches were characterized by elemental analysis coke yield solubi-lity in tetrahydrofuran and hexane and an optical microscopy to measure the mesiophase content. It was neces-sary to produce C/C composite that a mesophase pitch with about 30-40 vol% mesophase spherulites can be infiltrated into a fiber preform without a filter effect as a matrix precursor conditions. This condition was satisfied with mesophase pitch heat treated at 40$0^{\circ}C$ for 2 hours. The other heat treatment conditions showed the nuclei of mesophase or bulk mesophae which were not satisfied with the matix precursor condition.

  • PDF

Permittivities of the E-Glass Fabric/Epoxy Composite Laminates Containing Carbon Black Dispersion (카본 블렉을 함유한 복합재 적층판의 유전율)

  • 김진봉;김태욱
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.48-53
    • /
    • 2003
  • This paper presents a study on the permittivities of the I-glass fabric/epoxy composite laminates containing carbon black dispersions at microwave frequency. Measurements were performed at the frequency band of 5 GHz∼18 GHz. The results showed that the complex permittivities of the composites depend strongly on the natures and concentrations of the carbon black dispersion. A new scheme is proposed to obtain a mixing law for the estimation of the complex permittivities of the composite laminates as a function of concentration of carbon black. Simultaneously, the complex permittivity of carbon black itself was also calculated by the scheme. The experimental values of the complex permittivities of the composites were compared to those calculated.

The Effects of Temperature and Water Absorption on Failure Behaviors of Carbon / Aramid Fiber Composites (온도 및 수분이 탄소/아라미드 섬유 복합재의 파손거동에 미치는 영향)

  • Kwon, Woo Deok;Kwon, Oh Heon;Park, Woo Rim
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.11-19
    • /
    • 2022
  • This paper presents the effects of high temperature and water absorption on the mechanical behaviors of carbon-aramid fiber composites, specifically their strength, elastic modulus, and fracture. These composites are used in industrial structures because of their high specific strength and toughness. Carbon fiber composites are vulnerable to the impact force of external objects despite their excellent properties. Aramid fibers have high elongation and impact absorption capabilities. Accordingly, a hybrid composite with the complementary properties and capabilities of carbon and aramid fibers is fabricated. However, the exposure of aramid fiber to water or heat typically deteriorates its mechanical properties. In view of this, tensile and flexural tests were conducted on a twill woven carbon-aramid fiber hybrid composite to investigate the effects of high temperature and water absorption. Moreover, a multiscale analysis of the stress behavior of the composite's microstructure was implemented. The results show that the elastic modulus of composites subjected to high temperature and water absorption treatments decreased by approximately 22% and 34%, respectively, compared with that of the composite under normal conditions. The crack behavior of the composites was well identified under the specimen conditions.

Electrochemical Performance of Carbon/Silicon Composite as Anode Materials for High Capacity Lithium Ion Secondary Battery

  • Kim, Taek-Rae;Wu, Jing-Yu;Hu, Quan-Li;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.335-339
    • /
    • 2007
  • Carbon/silicon composites were synthesized by mixing silicon powders with petroleum pitch and subsequent heat-treatment. The resultant composites were composed of carbon and nano-size crystalline silicon identified by XRD and EDX. FIB images and SEM images were taken respectively to detect the existence of silicon impregnated in carbon and the distribution of silicon on the carbon surface. The obtained carbon/silicon materials were assembled as half cell anodes for lithium ion secondary battery and their electrochemical properties were tested. The pitch/silicon composite (3 : 1 wt. ratio) heat treated at $1000^{\circ}C$ and mixed with 55.5 wt.% of graphite showed relatively good electrochemical properties such as the initial efficiency of 78%, the initial discharge capacity of 605 mAh/g, and the discharge capacity of 500 mAh/g after 20 cycles.