• 제목/요약/키워드: Carbon-capturing capacity

검색결과 7건 처리시간 0.026초

고로슬래그 기반 탄소흡수용 콘크리트의 시멘트 첨가율 및 노출조건에 따른 역학적 특성 분석을 위한 실험적 연구 (Experimental Study on Mechanical Properties of Carbon-Capturing Concrete Composed of Blast Furnace Slag with Changes in Cement Content and Exposure)

  • 조현명;김승원;송지현;박희문;박철우
    • 한국도로학회논문집
    • /
    • 제17권4호
    • /
    • pp.41-51
    • /
    • 2015
  • PURPOSES: This study investigates the mechanical performance of carbon-capturing concrete that mainly contains blast furnace slag. METHODS: The mixture variables were considered; these included Portland cement content, which was varied from 10% to 40% of the blast furnace slag by weight. The specimens were exposed to different conditions such as high $N_2$ and $O_2$ concentrations, laboratory conditions and high $CO_2$ conditions. Mechanical performances, including compressive and flexural strengths and carbon-capturing depth, were evaluated. RESULTS : The slump, air content and unit weight were not affected significantly by the variation in cement content. The strength development when the specimens were exposed to high purity air was slightly greater than that when exposed to high $CO_2$. As the cement content increased the compressive and flexural strength increased but not considerably. The carbon-capturing capacity decreased as the cement content increased. The specimens exposed in the field for 70 days had flexural strength greater than 3 MPa. CONCLUSIONS : The results indicate that cement content is not an important parameter in the development of compressive and flexural strengths. However, the carbon-capturing depth was higher for less cement content. Even after field exposure for 70 days, neither any significant damage on the surface nor any decrease in strength was observed.

Removal of radioactive methyliodide from the gas stream with a composite sorbent based on polyurethane foam

  • Obruchikov, Alexander V.;Magomedbekov, Eldar P.;Merkushkin, Aleksei O.
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.1093-1097
    • /
    • 2020
  • A composite iodine sorbent was obtained in the form of porous polymer matrix with activated carbon particles impregnated with triethylenediamine deposited on its surface. A comparative assessment of the radioactive methyliodide capturing efficiency by the composite sorbent and a sample of industrial charcoal sorbent was conducted. It was shown that under the selected testing conditions, the hydraulic resistance of the composite sorbent is lower, and the sorption capacity is higher than that of the industrial charcoal sorbent. A method for comparing the effectiveness of iodine sorbents, based on the calculation of the ratio of the sorption capacity index to the minimum capacity index, needed for the required purification degree was proposed.

Electrochemical Properties of Lithium Sulfur Battery with Silicon Anodes Lithiated by Direct Contact Method

  • Kim, Hyung Sun;Jeong, Tae-Gyung;Kim, Yong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권3호
    • /
    • pp.228-233
    • /
    • 2016
  • It is hard to employ the carbon materials or the lithium metal foil for the anode of lithium sulfur batteries because of the poor passivation in ether-based electrolytes and the formation of lithium dendrites, respectively. Herein, we investigated the electrochemical characteristics of lithium sulfur batteries with lithiated silicon anode in the liquid electrolytes based on ether solvents. The silicon anodes were lithiated by direct contact with lithium foil in a 1M lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) solution in 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) at a volume ratio of 1:1. They were readily lithiated up to ~40% of their theoretical capacity with a 30 min contact time. In particular, the carbon mesh reported in our previous work was employed in order to maximize the performance by capturing the dissolved polysulfide in sulfur cathode. The reversible specific capacity of the lithiated silicon-sulfur batteries with carbon mesh was 1,129 mAh/g during the first cycle, and was maintained at 297 mAh/g even after 50 cycles at 0.2 C, without any problems of poor passivation or lithium dendrite formation.

CO2 흡착을 위한 Ethylenediamine 함침 MCM41의 특성 분석 (Characteristics Analysis of MCM41 Impregnated with Ethylenediamine for CO2 Adsorption)

  • 이철규;최성우
    • 한국환경과학회지
    • /
    • 제21권6호
    • /
    • pp.705-711
    • /
    • 2012
  • Adsorption experiment of carbon dioxide was performed on MCM41 silica with a 30 wt.% EDA(ethylenediamine) loading at different $CO_2$ inlet concentration and various adsorption temperature. The surface characteristics of $CO_2$ capturing agent were carried out using BET analysis, X-ray diffraction and FT-IR. The results of BET showed 781 $m^2/g$ for MCM41 and 464 $m^2/g$ for EDA/MCM41. X-ray diffraction results reveled typical hexagonal pore system. The higher sorption capacity of EDA/MCM41 was about 80 $mg_{CO2}/g_{sorbent}$ with 50% $CO_2$ inlet concentration and 303 K adsorption temperature. The isosteric heat of adsorption in 303-353 K ranged from -25.47 to -28.24 KJ/mole for EDA/MCM41, which indicates $CO_2$-EDA/MCM41 interaction with exothermic adsorption process. Finally, the performance of EDA/MCM41 in 10 consecutive sorption-desorption runs was a stable with only a minor drop in its sorption capacity.

Entropy, enthalpy, and gibbs free energy variations of 133Cs via CO2-activated carbon filter and ferric ferrocyanide hybrid composites

  • Lee, Joon Hyuk;Suh, Dong Hack
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3711-3716
    • /
    • 2021
  • The addition of ferric ferrocyanide (Prussian blue; PB) to adsorbents could enhance the adsorption performance of 133Cs. Toward this goal, we present a heterogeneously integrated carbonaceous material platform consisting of PB in direct contact with CO2-activated carbon filters (PB-CACF). The resulted sample retains 24.39% more PB than vice versa probed by the ultraviolet-visible spectrometer. We leverage this effect to capture 133Cs in the aqueous environment via the increase in ionic strength and micropores. We note that the amount of PB was likely to be the key factor for 133Cs adsorption compared with specific surface characteristics. The revealed adsorption capacity of PB-CACF was 21.69% higher than the bare support. The adsorption characteristics were feasible and spontaneous. Positive values of 𝜟Ho and 𝜟So show the endothermic nature and increased randomness. Based on the concept of capturing hazardous materials via hazardous materials, our work will be of interest within the relevant academia for collecting radionuclides in a sufficient manner.

건식흡수제 이용 연소배가스 이산화탄소 포집기술 (Advances of Post-combustion Carbon Capture Technology by Dry Sorbent)

  • 이창근
    • Korean Chemical Engineering Research
    • /
    • 제48권2호
    • /
    • pp.140-146
    • /
    • 2010
  • 이산화탄소 포집기술 중 건식흡수제를 이용한 연소 후 이산화탄소 포집기술에 대하여 최신기술개발 현황에 대하여 자세히 기술하였다. $CO_2$ 포집에 있어서 건식흡수제 이용 기술의 장점으로는 조업온도의 폭이 크고, 에너지손실이 적으며, 폐수발생이 없고, 부식성이 적으며, 고체폐기물의 상대적인 천연성을 들 수 있다. 현재 한국과 미국에서는 건식흡수제의 성능 개선과 더불어 실제 연소배가스로부터 $CO_2$ 포집을 위한 공정 개발을 통해 포집비용을 줄이려는 연구가 지속적으로 이루어지고 있다. 건식흡수제는 가격이 싼 알칼리금속 계열의 화학흡수제, 아민을 실리카 지지체에 고정시킨 흡수제, 아민을 실리카 지지체에 공유결합시킨 흡수제, 기공성의 탄소에 아민의 기능성을 첨가시킨 흡수제, 아민고정 고분자지지체 흡수제, 금속유기구조체등의 연구가 이루어지고 있다. 포집비용을 대폭 줄이기 위하여 소재에 있어서도 혁신적인 성능 개선이 필요한 시점이다.

$CO_2$ 액화 사이클의 액화 성능 특성에 관한 연구 (Study on the liquefaction performance characteristic of $CO_2$ liquefaction cycle)

  • 송찬호;이공훈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1312-1316
    • /
    • 2009
  • Growing interest in $CO_2$ capturing from industrial processes and storage in underground formations is emerging from commitments in reducing $CO_2$ emissions manifested in the Kyoto Protocol. In this paper, $CO_2$ liquefaction system is treated in focus of liquefaction efficiency & production rate. Presently $CO_2$ is transported in ships or trucks at a pressure of 14-20 bar. Considering this, the liquefaction pressures of 20, 15, 6.5 bar are selected. Compressor work and cooling capacity are calculated and compared. In order to investigate the effect of intercooling, the compressed gas after compressor work is cooled by ambient air or seawater. In case of applying the intercooling to the system, consuming energy can be saved larger than 20%. In the lower liquefaction pressure, the more $CO_2$ can be obtained due to higher density. In the liquefaction pressure of 6.5 bar, its $CO_2$ production is about 35% higher than that of the system with the liquefaction pressure, 20 bar.

  • PDF