• Title/Summary/Keyword: Carbon-capturing capacity

Search Result 7, Processing Time 0.02 seconds

Experimental Study on Mechanical Properties of Carbon-Capturing Concrete Composed of Blast Furnace Slag with Changes in Cement Content and Exposure (고로슬래그 기반 탄소흡수용 콘크리트의 시멘트 첨가율 및 노출조건에 따른 역학적 특성 분석을 위한 실험적 연구)

  • Cho, Hyun Myung;Kim, Seung Won;Song, Ji Hyeon;Park, Hee Mun;Park, Cheol Woo
    • International Journal of Highway Engineering
    • /
    • v.17 no.4
    • /
    • pp.41-51
    • /
    • 2015
  • PURPOSES: This study investigates the mechanical performance of carbon-capturing concrete that mainly contains blast furnace slag. METHODS: The mixture variables were considered; these included Portland cement content, which was varied from 10% to 40% of the blast furnace slag by weight. The specimens were exposed to different conditions such as high $N_2$ and $O_2$ concentrations, laboratory conditions and high $CO_2$ conditions. Mechanical performances, including compressive and flexural strengths and carbon-capturing depth, were evaluated. RESULTS : The slump, air content and unit weight were not affected significantly by the variation in cement content. The strength development when the specimens were exposed to high purity air was slightly greater than that when exposed to high $CO_2$. As the cement content increased the compressive and flexural strength increased but not considerably. The carbon-capturing capacity decreased as the cement content increased. The specimens exposed in the field for 70 days had flexural strength greater than 3 MPa. CONCLUSIONS : The results indicate that cement content is not an important parameter in the development of compressive and flexural strengths. However, the carbon-capturing depth was higher for less cement content. Even after field exposure for 70 days, neither any significant damage on the surface nor any decrease in strength was observed.

Removal of radioactive methyliodide from the gas stream with a composite sorbent based on polyurethane foam

  • Obruchikov, Alexander V.;Magomedbekov, Eldar P.;Merkushkin, Aleksei O.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1093-1097
    • /
    • 2020
  • A composite iodine sorbent was obtained in the form of porous polymer matrix with activated carbon particles impregnated with triethylenediamine deposited on its surface. A comparative assessment of the radioactive methyliodide capturing efficiency by the composite sorbent and a sample of industrial charcoal sorbent was conducted. It was shown that under the selected testing conditions, the hydraulic resistance of the composite sorbent is lower, and the sorption capacity is higher than that of the industrial charcoal sorbent. A method for comparing the effectiveness of iodine sorbents, based on the calculation of the ratio of the sorption capacity index to the minimum capacity index, needed for the required purification degree was proposed.

Electrochemical Properties of Lithium Sulfur Battery with Silicon Anodes Lithiated by Direct Contact Method

  • Kim, Hyung Sun;Jeong, Tae-Gyung;Kim, Yong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.228-233
    • /
    • 2016
  • It is hard to employ the carbon materials or the lithium metal foil for the anode of lithium sulfur batteries because of the poor passivation in ether-based electrolytes and the formation of lithium dendrites, respectively. Herein, we investigated the electrochemical characteristics of lithium sulfur batteries with lithiated silicon anode in the liquid electrolytes based on ether solvents. The silicon anodes were lithiated by direct contact with lithium foil in a 1M lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) solution in 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL) at a volume ratio of 1:1. They were readily lithiated up to ~40% of their theoretical capacity with a 30 min contact time. In particular, the carbon mesh reported in our previous work was employed in order to maximize the performance by capturing the dissolved polysulfide in sulfur cathode. The reversible specific capacity of the lithiated silicon-sulfur batteries with carbon mesh was 1,129 mAh/g during the first cycle, and was maintained at 297 mAh/g even after 50 cycles at 0.2 C, without any problems of poor passivation or lithium dendrite formation.

Characteristics Analysis of MCM41 Impregnated with Ethylenediamine for CO2 Adsorption (CO2 흡착을 위한 Ethylenediamine 함침 MCM41의 특성 분석)

  • Lee, Chul-Kyu;Choi, Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.705-711
    • /
    • 2012
  • Adsorption experiment of carbon dioxide was performed on MCM41 silica with a 30 wt.% EDA(ethylenediamine) loading at different $CO_2$ inlet concentration and various adsorption temperature. The surface characteristics of $CO_2$ capturing agent were carried out using BET analysis, X-ray diffraction and FT-IR. The results of BET showed 781 $m^2/g$ for MCM41 and 464 $m^2/g$ for EDA/MCM41. X-ray diffraction results reveled typical hexagonal pore system. The higher sorption capacity of EDA/MCM41 was about 80 $mg_{CO2}/g_{sorbent}$ with 50% $CO_2$ inlet concentration and 303 K adsorption temperature. The isosteric heat of adsorption in 303-353 K ranged from -25.47 to -28.24 KJ/mole for EDA/MCM41, which indicates $CO_2$-EDA/MCM41 interaction with exothermic adsorption process. Finally, the performance of EDA/MCM41 in 10 consecutive sorption-desorption runs was a stable with only a minor drop in its sorption capacity.

Entropy, enthalpy, and gibbs free energy variations of 133Cs via CO2-activated carbon filter and ferric ferrocyanide hybrid composites

  • Lee, Joon Hyuk;Suh, Dong Hack
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3711-3716
    • /
    • 2021
  • The addition of ferric ferrocyanide (Prussian blue; PB) to adsorbents could enhance the adsorption performance of 133Cs. Toward this goal, we present a heterogeneously integrated carbonaceous material platform consisting of PB in direct contact with CO2-activated carbon filters (PB-CACF). The resulted sample retains 24.39% more PB than vice versa probed by the ultraviolet-visible spectrometer. We leverage this effect to capture 133Cs in the aqueous environment via the increase in ionic strength and micropores. We note that the amount of PB was likely to be the key factor for 133Cs adsorption compared with specific surface characteristics. The revealed adsorption capacity of PB-CACF was 21.69% higher than the bare support. The adsorption characteristics were feasible and spontaneous. Positive values of 𝜟Ho and 𝜟So show the endothermic nature and increased randomness. Based on the concept of capturing hazardous materials via hazardous materials, our work will be of interest within the relevant academia for collecting radionuclides in a sufficient manner.

Advances of Post-combustion Carbon Capture Technology by Dry Sorbent (건식흡수제 이용 연소배가스 이산화탄소 포집기술)

  • Yi, Chang-Keun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.140-146
    • /
    • 2010
  • This paper addresses recent status and trends of carbon dioxide capture technologies using dry sorbents in the flue gas. The advantages of dry sorbent $CO_2$ capture technology are broader operating temperature range, less energy loss, less waste water, less corrosion problem, and natural properties of solid wastes. Recently, U.S.A. and Korea have been developing processes capturing $CO_2$ from real coal flue gas as well as sorbents improving sorption capacity to decrease total $CO_2$ capture cost. New class of dry sorbents have been developed such as chemisorbents with alkali metals of which material cost is low, amines physically adsorbed on silica supports, amines covalently tethered to the silica support, carbon-supported amines, polymer-supported amines, amine-containing solid organic resins and metal-organic framework. The breakthrough is needed in the materials on dry sorbents to decrease capture cost.

Study on the liquefaction performance characteristic of $CO_2$ liquefaction cycle ($CO_2$ 액화 사이클의 액화 성능 특성에 관한 연구)

  • Song, Chan-Ho;Lee, Kong-Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1312-1316
    • /
    • 2009
  • Growing interest in $CO_2$ capturing from industrial processes and storage in underground formations is emerging from commitments in reducing $CO_2$ emissions manifested in the Kyoto Protocol. In this paper, $CO_2$ liquefaction system is treated in focus of liquefaction efficiency & production rate. Presently $CO_2$ is transported in ships or trucks at a pressure of 14-20 bar. Considering this, the liquefaction pressures of 20, 15, 6.5 bar are selected. Compressor work and cooling capacity are calculated and compared. In order to investigate the effect of intercooling, the compressed gas after compressor work is cooled by ambient air or seawater. In case of applying the intercooling to the system, consuming energy can be saved larger than 20%. In the lower liquefaction pressure, the more $CO_2$ can be obtained due to higher density. In the liquefaction pressure of 6.5 bar, its $CO_2$ production is about 35% higher than that of the system with the liquefaction pressure, 20 bar.

  • PDF