• Title/Summary/Keyword: Carbon tip

Search Result 189, Processing Time 0.027 seconds

A Study on the Formation Mechanism of Discontinuities in $CO_2$ Laser Fusion Zone of Fe-Co-Ni Sintered Segment and Carbon Steel (Pe-Co-Ni 분말 소결 금속과 탄소강의 이종재료간 레이저 용접부의 결함형성기구 연구)

  • 신민효;김태웅;박희동;이창희
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.58-67
    • /
    • 2003
  • In this study, the formation mechanism of discontinuities in the laser fusion zone of diamond saw blade was investigated. $CO_2$ laser weldings were conducted along the butt between Fe base sintered tip and carbon steel shank with sets of variable welding parameters. The effect of heat input on irregular humps, outer cavity, inner cavity and bond strengh was evaluated. The optimum heat input to have a proper humps was in the range of 10.4~$17.6kJm_{-1}$. With increasing heat input, both outer and inner cavities were reduced. The outer cavity was caused by insufficient refill of keyhole, while inner cavity was caused by trapping of bubble in molten metal. The bubble came from sintered tip and intensive vaporization at bottom tip of the keyhole. A gas formation and low melting point element vaporization were not occurred during welding. We could not find any relationship between bond strength and amount of discontinuities. Because the fracture were occurred in not only sintered tip but also carbon steel shank due to hardness distributions.

Nanoscale Nonlinear Dynamics of Carbon Nanotube Probe Tips (탄소나노튜브 탐침의 나노 비선형 동역학)

  • 이수일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.83-86
    • /
    • 2004
  • Carbon nanotube (CNT) tips in tapping mode atomic force microscopy (AFM) enable very high-resolution imaging, measurements, and manipulation at the nanoscale. We present recent results based on experimental analysis that yield new insights into the dynamics of CNT probe tips in tapping mode AFM. Experimental measurements are presented of the frequency response and dynamic amplitude-distance data of a high-aspect-ratio multi-walled (MW) CNT tip to demonstrate the non-linear features including tip amplitude saturation preceding the dynamic buckling of the MWCNT. Surface scanning is performed using a MWCNT tip on a SiO$_2$ grating to verify the imaging instabilities associated with MWCNT buckling when used with normal control schemes in the tapping mode. Lastly, the choice of optimal setpoints for tapping mode control using CNT probe tip are discussed using the experimental results.

  • PDF

Non-contact mode measurement of high aspect ratio tip (High aspect ratio 팁의 비접촉모드에서의 측정)

  • Shin Y.H.;Han C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.463-464
    • /
    • 2006
  • This paper present experimental results by non-contact mode Atomic Force Microscopy using high aspect ratio tips (HAR-T). We fabricated the carbon nanotube tip based on dielectrophoresis and the carbon nano probe by focused ion beam after dielectrophoretic assembling. In this paper, we measure AAO sample and trench structure to estimate HAR-T's performance and compared with conventional Si tip. We confirmed that results of HAR-T's performance in non contact mode was very superior than conventional tip.

  • PDF

Carbon tip growth by electron beam deposition (전자빔 조사에 의한 탄소상 탐침의 성장)

  • 김성현;최영진
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.144-149
    • /
    • 2003
  • Carbon tips were grown on Si cantilevers by applying an electron beam to them directly with Scanning Electron Microscope. A carbon tip was fabricated by aligning the electron beam directly down the vertical axis of Si cantilever and then irradiating a single spot on the cantilever for a proper time in the dominant atmosphere of residual gases generated by the oil of the diffusion pump. A number of control parameters for SEM, including exposure time, acceleration voltage, emission current, and beam probe current, were allowed to make various aspect ratio feature. The growth of carbon tips was not affected by the surface morphology of substrates. We could acquired the tip whose effective length is 0.5 $\mu\textrm{m}$, bottom diameter is 90 nm and cone half angle $3.5^{\circ}$ The growth technique of the high aspect ratio carbon tips on the tip-free cantilevers is available to reduce the complexities of fabricating sub-micron scale tips on the PZT thin film actuator integrated AFM cantilevers.

The Vertical Alignment of CNTs and Ni-tip Removal by Etching at ICPHFCVD (ICPHFCVD에 의한 탄소나노튜브의 수직 배향과 에칭을 이용한 Ni-tip의 제거)

  • 김광식;장건익;장호정;류호진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.55-60
    • /
    • 2002
  • This paper presents a technique for the preparation of vertically grown CNTs by ICPHFCVD(inductively coupled plasma hot filament chemical vapor deposition) below $580^{\circ}C$. Purification of the CNTs(carbon nanotubes) using RE(radio frequency) plasma in a one step process, based on the different etching property of the Ni-tip, amorphous carbon and carbonaceous materials is also discussed. After purifying the grown materials. CNTs shown the multi walled and hollow typed structure. The typical outer and inner diameters or CNT were 50 nm and 25 nm, respectively. The graphitic wall was composed of 82 layers and the distance between wall and wall was 0.34 nm. From the results of TEM observation, the Ni catalyst at the tip of the carbon nanotubes were effectively removed by using a RF plasma etching, continuously.

  • PDF

Etching Treatment of Vertically Aligned Carbon Nanotubes for the Application to Biosensor (바이오센서로의 응용을 위한 수직 배열된 탄소나노튜브의 식각처리)

  • Choi, Eun-Chang;Park, Yong-Seob;Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.594-598
    • /
    • 2008
  • The metal catalyst particles which there is as impurities on a tip part of carbon nanotube (CNT) are not good to apply it to a nano-electronic device. It was very important the opening of CNT-tip to fix a target bio material and a material to accept in CNT in a biosensor, so we performed $HNO_3$ wet etching to remove the metal catalyst particle which there was on a tip part of CNT grown up in the study and observed the opened CNT-tip with etching time. We synthesized the CNTs using a HF-PECVD method and choses the CNT length of 700 nm for the application of nano-electronic device such as a biosensor etc.. We observed the opened CNT-tip with wet etching times of $HNO_3$ (10, 30, 60 min). From the results, we observed that the CNT-tip was opened with the increase of wet etching time lively. In case of CNTs etched during 60 min, we confirmed that there was not the ratio of Ni included in CNTsI as catalyst. Conclusively, in the case of CNT etched for 60 minutes, it is completely good for application of a biosensor and, in addition, the metal-free CNTs will contribute to the application of other nanoelectronic devices.

Investigation of carbon nanotube growth termination mechanism by in-situ transmission electron microscopy approaches

  • Kim, Seung Min;Jeong, Seojeong;Kim, Hwan Chul
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.228-233
    • /
    • 2013
  • In this work, we report in-situ observations of changes in catalyst morphology, and of growth termination of individual carbon nanotubes (CNTs), by complete loss of the catalyst particle attached to it. The observations strongly support the growth-termination mechanism of CNT forests or carpets by dynamic morphological evolution of catalyst particles induced by Ostwald ripening, and sub-surface diffusion. We show that in the tip-growth mode, as well as in the base-growth mode, the growth termination of CNT by dissolution of catalyst particles is plausible. This may allow the growth termination mechanism by evolution of catalyst morphology to be applicable to not only CNT forest growth, but also to other growth methods (for example, floating-catalyst chemical vapor deposition), which do not use any supporting layer or substrate beneath a catalyst layer.

Analysis of Electric Field Distribution of PVDF Electrospinning According to Electrospinning Conditions (전기방사 조건에 따른 PVDF 방사의 전기장 분포 해석)

  • Yonjo Jung;Minsang Lee;Honggun Kim
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.4
    • /
    • pp.9-15
    • /
    • 2023
  • In this study, electric field analysis was conducted for each process as a preliminary step in the design of the electrospinning device to apply the electrospinning PVDF nanofibers to increase the filtering effect of insect screens. In the electrospinning analysis using a single nozzle, it was confirmed that there was a decrease in the electrostatic field strength as the tip's size decreased, an increase in the voltage, and no effect depending on the TCD distance. In addition, it was confirmed that the closer the distance between tips, the more electric field interference occurs, and this was found to have a more significant effect on the tip located in the center with tips on both sides. Therefore, based on these analytical results, it is believed that an increase in production speed can be expected by establishing an efficient process line by confirming the radiating area of the collector and designing the spacing between multi-nozzles through actual experiments.

  • PDF

Switch-on Phenomena and Field Emission from Multi-Walled Carbon Nanotubes Embedded in Glass

  • Bani Ali, Emad S;Mousa, Marwan S
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.244-252
    • /
    • 2016
  • This paper describes a new design of carbon nanotube tip. $Nanocly^{TM}$ NC 7000 Thin Multiwall Carbon Nanotubes of carbon purity (90%) and average diameter tube 9.5 nm with a high aspect-ratio (>150) were used. These tips were manufactured by employing a drawing technique using a glass puller. The glass microemitters with internal carbon nanotubes show a switch-on effect to a high current level (1 to $20{\mu}A$). A field electron microscope with a tip (cathode)-screen (anode) separation at ~10 mm was used to characterize the electron emitters. The system was evacuated down to a base pressure of ${\sim}10^{-9}$ mbar when baked at up to ${\sim}200^{\circ}C$ overnight. This allowed measurements of typical Field Electron Emission characteristics; namely the current-voltage (I-V) characteristics and the emission images on a conductive phosphorus screen (the anode). Fowler-Nordheim plots of the current-voltage characteristics show current switch-on for each of these emitters.

Application of Low-hydrogenated Diamond-like Carbon Film to Mo-tip Field Emitter Array (낮은 수소 함유량을 갖는 유사 다이아몬드 박막의 몰리브덴 팁 전계 방출 소자 응용)

  • Ju, Byeong-Kwon;Jung, Jae-Hoon;Lee, Yun-Hi;Kim, Hoon;Oh, Myung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.76-79
    • /
    • 1999
  • Low-hydrogenated DLC films were coated on the Mo-tip FEAs by 'layer-by-layer' process based on the plasma-enhanced CVD method. The hydrogen content in the DLC film deposited by the 'layer-by-layer' process was appeared to be remarkably lowered through SIMS analysis. Also, the low-hydrogenated DLC-coated Mo-tip FEA showed good potentiality for FED applications in terms of turn-on voltage, emission current, emission stability and light emitting uniformity.

  • PDF