• Title/Summary/Keyword: Carbon tip

Search Result 189, Processing Time 0.028 seconds

Fabrication of Integrated Triode-type CNT Field Emitters (집적화된 3 극형 탄소 나노 튜브 전자 방출원의 제작)

  • 이정아;문승일;이윤희;주병권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.2
    • /
    • pp.212-216
    • /
    • 2004
  • In this paper, we have fabricated a triode field emitter using carbon nanotubes (CNTs) directly grown by thermal chemical vapor deposition(CVD) method as an electron omission source. Vertically aligned CNTs have been grown in the center of the gate hole, to the size of 1.5 ${\mu}{\textrm}{m}$ in diameter, with help of a sacrificial layer of a type generally used in metal tip process. By the method of tilling the substrate, we made CNTs emitters both with and without SiO$_2$layer, a sidewall protector, deposited on sidewall of gate. After that we researched the electrical characteristics about two types of emitters. In effect, a sidewall protector can enhance the electrical characteristics by suppressing the problem of short circuits between the gate and the CNTs. The leakage current of an emitter with a sidewall protector is approximately sevenfold lower than that of an emitter without it at a gate voltage of 100 V.

Characterization of Soot Particles Generated in Non-sooting and Sooting Normal Diffusion Flames (Sooting 및 Non-Sooting 정상 확산 화염에서 생성되는 매연 입자의 특성에 대한 연구)

  • Choi, In-Chul;Lee, Jae-Bok;Hwang, Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.984-993
    • /
    • 2000
  • Characteristics of carbon soot particles generated in diffusion flames were studied. Non-sooting and sooting normal diffusion flames using propane or ethylene as fuel were selected. In the flames, soot volume fraction was measured by a thermocouple, and primary particle diameter and cluster size were analyzed by TEM photographs. The characteristics of soot particles depended on flame(non-sooting or sooting) and fuel(propane or ethylene) type. Unlike the sooting diffusion flames, particle growth and oxidation processes were clearly observed in the non-sooting diffusion flames. In the sooting diffusion flames, soot particle size was slightly changed at the flame tip.

Nonlinear Dynamics at the Nanoscale (나노스케일에서의 비선형 동역학)

  • Lee, Soo-Il;Hong, Sang-Hyuk;Park, Jun-Hyung;Lee, Jang-Moo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.125-128
    • /
    • 2004
  • AFM(Atomic Force Microscope) becomes a versatile tool in the nanoscale measurements and processes. Especially the tapping mode is a very useful mode in AFM operation to measure and process at the nanoscale. Although the tapping mode has a great potential for the novel techniques such as phase imaging, however, it is not clearly known the fundamental mechanics affected by complex tip-sample interactions. This paper shows the various nonlinear dynamic features in tapping mode AFM microcantilevers including hysteretic jumps and period doublings of the microcantilevers. Also it is discussed the complex dynamics of CNT(Carbon Nanotube) probes and the opportunities on the nanoscale nonlinear dynamics.

  • PDF

A Study on the Wearing Analysis of Insert Tip and Chip's Shape in Turning Operations (선삭가공에서의 인서트 팁의 마모분석과 칩의 형상에 관한 연구)

  • Park, Dong-Keun;Lee, Joon-Seong;Jo, Gye-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2430-2435
    • /
    • 2015
  • In order to achieve high flexibility in manufacture, analysis of chip's shape is one of the most important problems. This paper describes the change of machining characteristics in workpiece materials depending on turning clearance angle. The experiments start from choosing three workpiece materials that are SM45C(machine structural carbon steel), STS303(stainless steel), SCM415 (chrome-molybdenum steel). Then, the experiments show specifically how features of selected materials changed when they were processed with diverse machining depths and with feed rate starting from fixed rotational speed. Especially, the experiments were also analyzed in chip's shape and wear of insert tip. In conclusion, these experiments show that chip's shape was changed by quality of the materials, depth of cut, and conveying speed. When machining feedrate and machining depth were 0.10mm/rev and 0.3mm respectively, workpiece materials showed the best shapes, not categorizing quality of the materials and machining characteristics.

Numerical investigation of on-demand fluidic winglet aerodynamic performance and turbulent characterization of a low aspect ratio wing

  • A. Mondal;S. Chatterjee;A. McDonald Tariang;L. Prince Raj;K. Debnath
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.2
    • /
    • pp.107-125
    • /
    • 2023
  • Drag reduction is significant research in aircraft design due to its effect on the cost of operation and carbon footprint reduction. Aircraft currently use conventional solid winglets to reduce the induced drag, adding extra structural weight. Fluidic on-demand winglets can effectively reduce drag for low-speed flight regimes without adding any extra weight. These utilize the spanwise airflow from the wingtips using hydraulic actuators to create jets that negate tip vortices. This study develops a computational model to investigate fluidic on-demand winglets. The well-validated computational model is applied to investigate the effect of injection velocity and angle on the aerodynamic coefficients of a rectangular wing. Further, the turbulence parameters such as turbulent kinetic energy (TKE) and turbulent dissipation rate are studied in detail at various velocity injections and at an angle of 30°. The results show that the increase in injection velocity shifted the vortex core away from the wing tip and the increase in injection angle shifted the vortex core in the vertical direction. Further, it was found that a 30° injection is efficient among all injection velocities and highly efficient at a velocity ratio of 3. This technology can be adopted in any aircraft, effectively working at various angles of attack. The culmination of this study is that the implementation of fluidic winglets leads to a significant reduction in drag at low speeds for low aspect ratio wings.

Preparation of Polyacrylonitrile-based Carbon Nanofibers by Electrospinning and Their Capacitance Characteristics (전기방사에 의한 폴리아크릴로니트릴계 탄소나노섬유 제조와 커패시턴스 특성)

  • Park, Soo-Jin;Im, Se-Hyuk;Rhee, John M.;Park, Seong-Yong;Kim, Hee-Jung
    • Applied Chemistry for Engineering
    • /
    • v.18 no.3
    • /
    • pp.205-212
    • /
    • 2007
  • In this work, polyacrylonitrile (PAN) fiber was prepared by electrospinning methods from dimethyl formamide solutions with various conditions, such as 8~20 kV applied voltage, 5~15 wt% PAN concentration, and 15 cm tip-to-collector distance (TCD). The nanofibers were stabilized by oxidation at $250^{\circ}C$ for 1 h, and then subsequently carbonized at $800{\sim}1000^{\circ}C$ for 1 h. The structured characteristics of the nanofibers before and after carbonization were studied by Fourier transform infrared spectroscopy. The resulting diameter distribution and morphologies of the nanofiber were evaluated by scanning electron microscope analysis. The electrochemical behaviors of the nanofiber were observed by cyclic voltammetry tests. From the results, the diameter of electrospinning nanofibers was predominantly influenced by the concentration of polymer solution and the applied voltage. The average diameter of the fibers was decreased with increasing the polymer concentration up to 10wt%. It was also found that the nanofibers with uniform diameter distribution and fine diameter could be achieved at 15kV input voltage and 15 cm TCD.

Thickness Optimization for Spar Cap of Composite Tidal Current Turbine Blade using SQP Method (SQP법을 사용한 복합재 조류력 발전용 블레이드의 스파 캡에 대한 두께 최적화)

  • Cha, Myung-Chan;Kim, Sang-Woo;Jeong, Min-Soo;Lee, In;Yoo, Seung-Jae;Park, Cheon-Jin
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.207-212
    • /
    • 2013
  • In this study, the thickness optimization for uni-directional (UD) glass fiber reinforced polymer (GFRP) laminates of the spar cap of composite tidal blades was performed under the tip deflection constrains. The spar cap was composed of GFRP composites and carbon fiber reinforced polymer (CFRP) composites. The stress distributions in the blade as well as its material costs for the optimized results were additionally investigated. The optimized thickness was obtained by interacting a sequential quadratic programming (SQP) algorithm and an ABAQUS software to calculate an objective function. It was confirmed that the thickness of UD GFRP increased with a decrease of the restrained tip deflection when a thickness of UD CFRP laminates was constrained to 9 mm. The weight of the optimized spar-cap increased up to 96.2% while the maximum longitudinal tensile stress decreased up to 24.6%. The thickness of UD GFRP laminates increased with a decrease of the thickness of UD CFRP laminates when the tip deflection was constrained to 126.83 mm. The weight increased up to 40.1%, but the material cost decreased up to 16.97%. Finally, the relationships among the weight, internal tensile stress, and material costs were presented based on the optimized thicknesses of the spar cap.

Design and Structural Safety Evaluation of 1MW Class Tidal Current Turbine Blade applied Composite Materials (복합재료를 적용한 1MW급 조류 발전 터빈 블레이드의 설계와 구조 안전성 평가)

  • Haechang Jeong;Min-seon Choi;Changjo Yang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1222-1230
    • /
    • 2022
  • The rotor blade is an important component of a tidal stream turbine and is affected by a large thrust force and load due to the high density of seawater. Therefore, the performance must be secured through the geometrical and structural design of the blade and the blade structural safety to which the composite material is applied. In this study, a 1 MW class large turbine blade was designed using the blade element momentum (BEM) theory. GFRP is a fiber-reinforced plastic used for turbine blade materials. A sandwich structure was applied with CFRP to lay-up the blade cross-section. In addition, to evaluate structural safety according to flow variations, static load analysis within the linear elasticity range was performed using the fluid-structure interactive (FSI) method. Structural safety was evaluated by analyzing tip deflection, strain, and failure index of the blade due to bending moment. As a result, Model-B was able to reduce blade tip deflection and weight. In addition, safety could be secured by indicating that the failure index, inverse reserve factor (IRF), was 1 or less in all load ranges excluding 3.0*Vr of Model-A. In the future, structural safety will be evaluated by applying various failure theories and redesigning the laminated pattern as well as the change of blade material.

Vertical Growth of CNTs by Bias-assisted ICPHFCVD and their Field Emission Properties (DC Bias가 인가된 ICPHFCVD를 이용한 탄소나노튜브의 수직 배향과 전계방출 특성)

  • Kim, Kwang-Sik;Ryu, Ho-Jin;Jang, Gun-Eik
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.171-177
    • /
    • 2002
  • In this study, the vertical aligned carbon nanotubes was synthesized by DC bias-assisted Inductively Coupled Plasma Hot-Filament Chemical Vapor Deposition (ICPHFCVD). The substrate used CNTs growth was Ni(300 ${\AA}$)/Cr(200 ${\AA}$)-deposited one on glass by RF magnetron sputtering. R-F, DC bias and filament power during the growth process were 150 W, 80 W, 7∼8 A, respectively. The grown CNTs showed hollow structure and multi-wall CNTs. The top of grown CNT was found to Ni-tip that the CNT end showed to metaltip. The graphitization and field emission properties of grown was better than grown CNTs by ICPCVD. The turn-on voltage of CNT grown by DC bias-assisted ICPHFCVD showed about 3 V/${\mu}m$.

Fabrication of carbon nanotube emitters by filtration through a metal mesh

  • Choi, Ju-Sung;Lee, Han-Sung;Gwak, Jeung-Chun;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.150-150
    • /
    • 2010
  • Carbon nanotubes have drawn attention as one of the most promising emitter materials ever known not only due to their nanometer-scale radius of curvature at tip and extremely high aspect ratios but also due to their strong mechanical strength, excellent thermal conductivity, good chemical stability, etc. Some applications of CNTs as emitters, such as X-ray tubes and microwave amplifiers, require high current emission over a small emitter area. The field emission for high current density often damages CNT emitters by Joule heating, field evaporation, or electrostatic interaction. In order to endure the high current density emission, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects: highly crystalline CNT materials, low gas emission during electron emission in vacuum, optimal emitter distribution density, optimal aspect ratio of emitters, uniform emitter height, strong emitter adhesion onto a substrate, etc. We attempted a novel approach to fabricate CNT emitters to meet some of requirements described above, including highly crystalline CNT materials, low gas emission, and strong emitter adhesion. In this study, CNT emitters were fabricated by filtrating an aqueous suspension of highly crystalline thin multiwalled CNTs (Hanwha Nanotech Inc.) through a metal mesh. The metal mesh served as a support and fixture frame of CNT emitters. When 5 ml of the CNT suspension was engaged in filtration through a 400 mesh, the CNT layers were formed to be as thick as the mesh at the mesh openings. The CNT emitter sample of $1{\times}1\;cm^2$ in size was characteristic of the turn-on electrical field of 2.7 V/${\mu}m$ and the current density of 14.5 mA at 5.8 V/${\mu}m$ without noticeable deterioration of emitters. This study seems to provide a novel fabrication route to simply produce small-size CNT emitters for high current emission with reliability.

  • PDF