• Title/Summary/Keyword: Carbon steels

Search Result 419, Processing Time 0.023 seconds

DEPENDENCY OF SINGLE-PHASE FAC OF CARBON AND LOW-ALLOY STEELS FOR NPP SYSTEM PIPING ON PH, ORIFICE DISTANCE AND MATERIAL

  • Moon, Jeong-Ho;Chung, Hung-Ho;Sung, Ki-Woung;Kim, Uh-Chul;Rho, Jae-Seong
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.375-384
    • /
    • 2005
  • To investigate the flow-accelerated corrosion (FAC) dependency of carbon steel (A106 Gr. B) and low-alloy steels (1Cr-1/2Mo, 21/4Cr-1Mo) on pH, orifice distance, and material, experiments were carried out. These experiments were performed using a flow velocity of 4 m/sec (partly 9 m/sec) at pH $8.0\~10.0$ in an oxygen-free aqueous solution re-circulated in an Erosion-Corrosion Test Loop at $130^{\circ}\;{\ldots}$ for 500 hours. The weight loss of the carbon steel specimens appeared to be positively dependent on the flow velocity. That of the carbon and low-alloy steel specimens also showed to be distinguishably dependent on the pH. At pH levels of $8.0\~9.5$ it decreased, but increased from 9.5 to 10.0. Utility water chemistry personnel should carefully consider this kind of pH dependency to control the water system pH to mitigate FAC of the piping system material. The weight loss of the specimens located further from the orifice in the distance range of $6.8\~27.2$ mm was shown to be greater, except for 21/4Cr-1Mo, which showed no orifice distance dependency. Low alloy steel specimens exhibited a factor of two times better resistance to FAC than that of the carbon steel. Based on this kind of FAC dependency of the carbon and low-alloy steels on the orifice distance and material, we conclude that it is necessary to alternate the composition of the secondary piping system material of NPPs, using low-alloy steels, such as 21/4Cr-1Mo, particularly when the system piping has to be replaced.

Inhomogeneity of Hot Rolling Texture in Cu/Nb Added Ultra Low Carbon Steels

  • Jiang, Ying-Hua;Park, Young-Koo;Lee, Oh-Yeon
    • Korean Journal of Materials Research
    • /
    • v.17 no.12
    • /
    • pp.634-636
    • /
    • 2007
  • The texture and microstructure in Cu/Nb added ultra low carbon steels through the different thickness layer were studied after hot rolling. It was found that the two ultra low carbon steels all show the inhomogeneity of hot rolling texture and the Cu-added ultra low carbon steel was far more inhomogeneous than Nb-added one. In the center layer, the strong ${\alpha}\;fibre,\;{\gamma}\;fibre$ textures and the shear textures including 001<110>, 111<112> were founded. Near the surface, the ${\alpha}\;fibre$ texture and the orientation texture caused by a typical plane-strain deformation condition of bcc metals were observed.

High power $CO_2$ laser beam welding for low carbon steels (저탄소강의 고출력 $CO_2$ 레이저 빔 용접)

  • 김재도
    • Journal of Welding and Joining
    • /
    • v.7 no.4
    • /
    • pp.12-21
    • /
    • 1989
  • Laser beam welding parameters have experimentally investigated, using a continuous wave 3kW $CO_2$ laser with the various travel speeds, beam mode and laser beam power in low carbon steels. An optimum position of focus and the effect of shielding gas on penetration depth with varying the flow range of 0.5 to 5.1m/min have been combined to investigate the effect of laser power and travel speed on penetration depth and bead width. It is found that the optimum position of focus in 3kW class laser is 0.5 to 1.5mm below the surface of the material. The flow rate of shielding gas affects the penetration depth and He is more effective than Ar. The penetration depth in laser welds of low carbon steels is between two and four times of the bead width. Laser beam welding of butt joints in 2mm thick carbon steel has been carried out to establish a weldability lobe. The lobe indicating acceptable welding conditions is introduced.

  • PDF

Effects of V on the Formation of Ti-Nb-V Cabonitrides and Mechanical Properties in Low Carbon HSLA Steels (저탄소.저합금강의 Ti-Nb-V 복합 탄질화물 형성 및 기계적 특성에 미치는 V 첨가의 효과)

  • Kang, J.S.;Kim, D.J.;Park, C.G.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.581-585
    • /
    • 2006
  • Effects of V on both the formation of Ti-Nb-V carbonitrides and mechanical properties of Ti-Nb bearing low carbon HSLA steels were investigated. Hot rolling process was simulated by using Gleeble 3500 system with the steels containing three different levels of V ($0{\sim}0.1wt.%$). Vanadium precipitated as Ti-Nb-V carbonitrides at austenite region but it did not precipitate as VC during austenite to acicular ferrite or bainitic ferrite phase transformation. As V content increased, the amount of Nb precipitates was decreased but the average size of Ti-Nb-V carbonitrides was increased due to larger diffusivity of V than that of Nb. Coarsened Ti-Nb-V carbonitrides could act as heterogeneous nucleation site during ${\gamma}{\rightarrow}{\alpha}$ phase transformation, thus, acicular ferrite transformation was promoted as V content increased, resulting in increase of upper shelf energy.

Effects of Microstructural Parameters on the Reduction of Area in Hyper-eutectoid Steel Wires (과공석 강선에서 미세조직 인자들이 단면감소율에 미치는 영향)

  • An, K.S.;Park, J.H.;Bae, H.J.;Nam, W.J.
    • Transactions of Materials Processing
    • /
    • v.25 no.5
    • /
    • pp.306-312
    • /
    • 2016
  • Effects of manufacturing conditions, such as austenitizing temperature, patenting temperature and carbon content in steels, on mechanical properties, especially on reduction of area (RA), of hyper-eutectoid steel wires were investigated. RA increased and then decreased with transformation temperature. This was attributed to the presence of abnormal structures in steels transformed at low transformation temperatures and the occurrence of shear cracking during tensile testing of steels transformed at high transformation temperatures. The increase of austenitizing temperature resulted in the increased austenite grain size and consequently the decrease of RA. The decrease of RA with increasing the carbon content in steels was attributed to the increased fraction of cleavage fracture in tensile fractured surfaces.

Effect of Pre-strain on the Bauschinger Phenomenon of Micro-Alloying Forging Steel (비조질강의 바우싱거 효과에 미치는 변형율 영향)

  • Kwon Y.-N.;Lee Y. S.;Kim S. W.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.313-316
    • /
    • 2005
  • In the present study, Bauschinger effect was investigated for the micro-alloying forging steel which has been developed for about 30 years ago to save energy consumption by eliminating the heat treatment processes in the forging industry. The micro-alloying steels used fur cold forging industry mainly aim to replace the usual carbon steel. With the conventional carbon steels, all the deformation history can be eliminated after the final heat treatment(quenching and tempering). In the case of micro-alloying forging steels, however, the prior deformation history should be taken into consideration to meet the mechanical property requirement since the microstructure of micro-alloying steels might exhibit the Bauschinger effect, which was not needed to consider in the case of conventional carbon steel having quenching and tempering treatment. In the present study, the reverse loading tests were carried out to determine the Bauschinger effect of micro-alloying steel which composed of ferrite and cementite phases.

  • PDF

Effects of microstructure on impact transition temperature of low carbon HSLA steels (저탄소 HSLA강의 천이 온도 미치는 미세 조직의 영향)

  • Kang, J.S.;Lee, C.W.;Park, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.431-434
    • /
    • 2008
  • Effects of microstructure on the toughness of low carbon HSLA steels were investigated. Nickel decreased the ferrite-austenite transformation temperature, resulted in increase of the fraction of bainitic ferrite. However, it was decreased with increasing deformation amount at austenite region. Since fine austenite grains formed by dynamic recrystallization under large strain transformed to acicular ferrite or granular bainite rather than bainitic ferrite. The effective grain size, thus, was decreased by deformation and it resulted in lower ductile-brittle transition temperature (DBTT). The bainitic ferrite was thought to inhibit the fracture crack initiation and to delay the crack propagation by its high dislocation density and hard interlath $2^{nd}$ phase constituents, respectively. Thus, DBTT was also decreased by Ni addition in low carbon HSLA steels.

  • PDF

Analysis of Cracking Phenomenon Occurring During Hot Rolling of Fe-23Mn High-manganese Steels with Different Aluminium and Carbon Contents (알루미늄과 탄소 함량에 따른 Fe-23Mn계 고망간강의 열간 압연 시 발생하는 균열 현상 분석)

  • Lim, Hyeon-Seok;Lee, Seung-Wan;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.4
    • /
    • pp.176-180
    • /
    • 2016
  • In this study, a microstructural investigation was conducted on the cracking phenonmenon occurring during hot rolling of Fe-23Mn high-manganese steels with different aluminium and carbon contents. Particular emphasis was placed on the phase stability of austenite and ferrite dependent on the chemical composition. An increase in the aluminum content promoted the formation of ferrite band structures which were easily deformed or cracked. In the steels containing high carbon contents of 0.4 wt.% or higher, on the other hand, the volume fraction and thickness of ferrite bands decreased and thus the cracking frequency was significantly reduced. Based on these findings, it is said that the microstructural evolution occurring during hot rolling of high-manganese steels with different aluminium and carbon contents plays an important role in the cracking phenomenon. To prevent the cracking, therefore, the formation of second phases such as ferrite should be minimized during the hot rolling by the appropriate control of the chemical composition and process parameters

Effect of Molybdenum Addition on the Mechanical Properties of Direct-Quenched Low-Carbon Non-Treated Steels (직접 소입 저탄소 비조질강의 기계적 성질에 미치는 몰리브덴의 영향)

  • Ju, Eun-Seok;An, Byeong-Gyu;Lee, Gyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.364-375
    • /
    • 1994
  • The microstructure of medium-carbon non-heat treated steels by air-cooling shows ferritepearlite structure. Compared to the conventional Q/T steels, the strength of these steels containing V, Nb and Ti are similar to Q/T steels. However, their toughness are inferior. In this study, the mechanical properties and microstructures of low-carbon Mo bearing steels produced by direct-quenching process were investigated. Especially, the effect of Mo on the direct-quenched steels was examined. The direct-quenched steels containing Mo were found to have higher strength and toughness. Mo seemed to be effective in producing the fine structure and dense precipitates because of decreasing transformation temperature. The best results were 1211 MPa in UTS and 127.5 J in toughness in the oil quenched 0.15C+O.llV+ 0.035Nb+ 1.81Mo steel. Compared to 0.4% C microalloyed steels, this results showed that UTS increased by 45% and toughness by 2 times.

  • PDF

Chip-Tool Friction and Shear Characteristics of Cold Drawn Free Machining Steels in Turning (냉각인발된 쾌삭강의 외경선삭시 칩-공구 마찰 및 전단 특성)

  • Lee, Young-Moon;Cho, Sam-Kyu;Choi, Soo-Joon;Song, Tae-Seong;Park, Tae-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.198-203
    • /
    • 1999
  • In this study, chip-tool friction and shear characteristics of cold drawn free machining steels in turning were assessed. To do this, a newly developed equivalent oblique cutting model was adopted. And for comparison with those of free machining steels, chip-tool friction and shear characteristics of conventional carbon steels were also investigated. The Pb-S free machining steel shows superior machinability to others. In case of the Bi-S free machining steel, the shear stress and the specific friction energy are relatively lower than those of conventional carbon steels, but its shear strain is relatively high, so it does not show any remarkable improvement of machinability.

  • PDF