• Title/Summary/Keyword: Carbon sequestration

Search Result 280, Processing Time 0.029 seconds

Microalgal Removal of $CO_2$from Flue Gases: Changes in Medium pH and Flue Gas Composition Do Not Appear to Affect the Photochemical Yield of Microalgal Cultures

  • Olaizola, Miguel
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.6
    • /
    • pp.360-367
    • /
    • 2003
  • Our research objectives are to determine under what conditions microalgal-based $CO_2$capture from flue gases is economically attractive. Specifically, our objective here was to select microalgae that are temperature, pH and flue gas tolerant. Microalgae were grown under five different temperatures, three different pH and five different flue gas mixtures besides 100% $CO_2$(gas concentrations that the cells were exposed to ranged 5.7-100% $CO_2$, 0-3504ppm SO$_2$, 0-328ppm NO, and 0-126ppm NO$_2$). Our results indicate that the microalgal strains tested exhibit a substantial ability to withstand a wide range of temperature (54 strains tested), pH (20 strains tested) and flue gas composition (24 strains tested) likely to be encountered in cultures used for carbon sequestration from smoke stack gases. Our results indicate that microalgal photosynthesis is a limited but viable strategy for $CO_2$capture from flue gases produced by stationary combustion sources.

Heme Oxygenase-1 : Its Therapeutic Roles in Inflammatory Diseases

  • Pae, Hyun-Ock;Chung, Hun-Taeg
    • IMMUNE NETWORK
    • /
    • v.9 no.1
    • /
    • pp.12-19
    • /
    • 2009
  • Heme oxygenase (HO)-1 is an inducible enzyme that catalyzes the first and rate-limiting step in the oxidative degradation of free heme into ferrous iron, carbon monoxide (CO), and biliverdin (BV), the latter being subsequently converted into bilirubin (BR). HO-1, once expressed during inflammation, forms high concentrations of its enzymatic by-products that can influence various biological events, and this expression is proven to be associated with the resolution of inflammation. The degradation of heme by HO-1 itself, the signaling actions of CO, the antioxidant properties of BV/BR, and the sequestration of ferrous iron by ferritin all concertedly contribute to the anti-inflammatory effects of HO-1. This review focuses on the anti-inflammatory mechanisms of HO-1 actions and its roles in inflammatory diseases.

High Temperature Thermochemical Treatment and Characterization of Sepiolite for $CO_2$ Storage ($CO_2$ 저장용 Sepiolite의 고온 열화학처리 및 특성평가)

  • Choi, Weon-Kyung;Cho, Tae-Hwan
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.4
    • /
    • pp.425-433
    • /
    • 2006
  • Sepiolite was selected as a mineral carbonation candidate ore for carbon dioxide sequestration. Carbonation salt formation from alkaline earth metal ingredient needs to dehydroxylation of sepiolite at high temperature. An evident dehydroxylation was observed over $800^{\circ}C$ and the variations of sepiolite characteristics after high temperature treatment was synthetically evaluated. Remarkable weight loss were measured after high temperature thermochemical reaction then crystallographic and spectroscopic changes were analyzed. The resulted alkaline earth metal oxides could explained by dehydroxylation based on thermochemical reaction.

Numerical Study on the Dissolution Behavior of $CO_2$ Hydrate for Global Warming Mitigation (지구온난화 저감을 위한 이산화탄소 하이드레이트 용해거동에 대한 수치적 연구)

  • Kim, Nam-Jin;Seo, Hyang-Min;Chun, Won-Gee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.66-69
    • /
    • 2006
  • The idea of $CO_2$ sequestration in the ocean is proposed to be an effective mitigation strategy to counteract potential global warming due to the greenhouse effect Therefore, in the present study, calculations of the dissolution behavior of $CO_2$ hydrate when liquid carbon dioxide is released at 1,000m and 1,500m in depth are performed. The results show the liquid $CO_2$ injected in the ocean becomes $CO_2$ bubble at between 350m and 500m in depth, and the injection from a moving ship is a more effective method of dissolution than through a fixed pipeline. It so also noted that the ultimate plume generated from $CO_2$ bubbles repeats expansion and shrinking due to the peel ins from a fixed pipeline.

  • PDF

Desorption-Resistance of Hydrophobic Organic Compounds in Natural Soils

  • Shin, Won-Sik
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.26-29
    • /
    • 2001
  • Sorption/desorption Study was conducted to determine desorption-resistance hydrophobic organic compounds in natural soils with low organic carbon content. Sorption/desorption characteristics of chlorobenzene and phenanthrene for both PPI (Petro Processors, Inc. Superfund site) and BM (Bayou Manchac), soils were investigated. Desorption was biphasic including reversible and desorption-resistant compartments. The biphasic sorption parameters indicated the presence of appreciable size of desorption-resistant phase in these soils. A finite maximum capacity of desorption-resistant fraction (equation omitted) was observed after several desorption steps. The apparent organic carbon based Partition coefficient, K(equation omitted) was 10$^{4.92{\pm}0.27}$ for PPI soil and 10$^{4.92{\pm}0.27}$ for BM soil, respectively. The difference in K(equation omitted) was attributed to different characteristics in soil organic matter. The results suggest that desorption-resistance should be considered in remediation and risk assessments in natural soils and sediments.

  • PDF

Physicochemical Study of Thermal Treated Serpentine for Carbon Dioxide Sequestration (이산화탄소 포획을 위한 serpentine의 열처리와 물리화학적 특성 변화 연구)

  • Choi, Weon-Kyung;Cho, Tae-Hwan
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.3
    • /
    • pp.301-308
    • /
    • 2007
  • Silicate mineral serpentine with magnesium and calcium was selected as a mineral carbonation mediators for carbon dioxide storage. Serpentine has various metallic elements as an oxides form of magnesium, iron, calcium, aluminium etc. Magnesium and calcium could be carbonation salt preferentially than other metal component within serpentine. Systemic thermochemical treatment for serpentine could change physicochemical properties like a surface area and pore dimensions. Due to the rapid chemical reaction rate depended on dimensional values, carbonation formation could determined by surface property change of thermochemical treated serpentine.

Nanoporous graphene oxide membrane and its application in molecular sieving

  • Fatemi, S. Mahmood;Arabieh, Masoud;Sepehrian, Hamid
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.183-191
    • /
    • 2015
  • Gas transport through graphene-derived membranes has gained much interest recently due to its promising potential in filtration and separation applications. In this work, we explore Kr-85 gas radionuclide sequestration from natural air in nanoporous graphene oxide membranes in which different sizes and geometries of pores were modeled on the graphene oxide sheet. This was done using atomistic simulations considering mean-squared displacement, diffusion coefficient, number of crossed species of gases through nanoporous graphene oxide, and flow through interlayer galleries. The results showed that the gas features have the densest adsorbed zone in nanoporous graphene oxide, compared with a graphene membrane, and that graphene oxide was more favorable than graphene for Kr separation. The aim of this paper is to show that for the well-defined pore size called P-7, it is possible to separate Kr-85 from a gas mixture containing Kr-85, O2 and N2. The results would benefit the oil industry among others.

Technology Trend Analysis of CO2 Solvent by Patent Information (특허정보를 활용한 습식 이산화탄소 포집 기술동향 분석)

  • Lee, Yun-Seock;Lee, Su-Jin;Lee, Jeong-Gu;Hong, Soon-Jik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.5
    • /
    • pp.250-257
    • /
    • 2015
  • As recognized by all scientific and industrial groups, carbon dioxide ($CO_2$) capture and sequestration (CCS) could play an important role in reducing greenhouse gas emissions. This paper is aimed at identifying evolving technological trends from the objective information of patents related to carbon capture technology by solvent. In this study the patents applied in korea, japan, china, canada, US, EU from 1993 to 2013 were analyzed. The result of patent analysis could be used for R&D and policy making of domestic CCS industry.

Numerical Study on the Dissolution Behavior of $CO_2$ Hydrate for Global Warming Mitigation (지구온난화 저감을 위한 이산화탄소 하이드레이트 용해거동에 대한 수치적 연구)

  • Kim, Nam-Jin;Seo, Hyang-Min;Chun, Won-Gee
    • New & Renewable Energy
    • /
    • v.2 no.4 s.8
    • /
    • pp.4-11
    • /
    • 2006
  • The idea of $CO_2$ sequestration in the ocean is proposed to be an effective mitigation strategy to counteract potential global warming due to the greenhouse effect. Therefore, in the present study, calculations of the dissolution behavior of $CO_2$ hydrate when liquid carbon dioxide is released at 1,000m and 1,500m in depth are performed. The results show the liquid $CO_2$ injected in the ocean becomes $CO_2$ bubble at between 350 m in depth, and the injection from a moving ship is a more effective method of dissolution than through a fixed pipeline. It so also noted that the ultimate plume generated from $CO_2$ bubbles repeats expansion and shrinking due to the peeling from a fixed pipeline.

  • PDF

The Analysis of Potential Reduction of CO2 Emission In Soil and Vegetation due to Land use Change (토지이용변화에 따른 식생 및 토양의 이산화탄소 저감잠재량 분석)

  • Lee, Dong-Kun;Park, Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Land Use Changes (LUCs) have effects on greenhouse gas emissions and carbon stocks in soil and vegetation. Therefore, predictions for LUC are very important for achieving quantitative targets of $CO_2$ reduction rates. Some research exists on carbon fluxes and carbon cycles to estimate carbon stocks in terrestrial ecosystems in Korea. However, these researches have limitations in terms of helping us understand future potential reductions of $CO_2$ that reflect the influence of LUC. The aim of this study is to analyze the reduction levels of $CO_2$ emissions while considering LUC scenarios that effect carbon fluxes for LCS basic study in the year 2030. In this study, a common approach to model the effects of LUC on carbon stocks is the use of CA-Markov technical process with LUC patterns in the past. Potential reduction of $CO_2$ is calculated by change of land use that contains different soil organic carbon, each land use type, and biomass in vegetation. An IPCC analytical method of natural carbon sink and coefficient results from previous study in Korea is used as a calculation method for potential reduction of $CO_2$. As a result, 12,419 KtC will be reduced annually, which is 8.3% percent of 2005 $CO_2$ emissions in Korea. This will result in 3,226 hundred million won of economic efficiency. In conclusion, conservation of natural carbon sinks is necessary even if the amount of potential reduction change is little.