• Title/Summary/Keyword: Carbon recovery

Search Result 493, Processing Time 0.018 seconds

Collection, Identification and Hepatic Effect of Native Cordyceps militaris (새로운 번데기 동충하초의 수집, 동정 및 간기능에 미치는 효과)

  • Lee, Ki-Won;Nam, Byung-Hyouk;Jo, Wool-Soon;Oh, Su-Jung;Kang, Eun-Young;Cui, Yong;Lee, Jae-Yun;Cheon, Sang-Cheol;Jeong, Min-Ho;Lee, Jae-Dong
    • The Korean Journal of Mycology
    • /
    • v.34 no.1
    • /
    • pp.7-14
    • /
    • 2006
  • Entomopathogenic fungus Cordyceps militaris is famous for its medicinal efficacies. It has been reported to have various pharmacological activities such as anti-tumour, insecticidal, antibacterial, immunomodulatory and antioxidant. In this study, we investigated the effect of the extract of C. militaris (MPUN8501), which was identified by the analysis of the nucleotide sequences of 5.8S ribosomal RNA, on the function of liver. C. militaris powder was extracted using hot water extracts method as time, volume and temperature and using method as differential polarity of organic solvent. Each fraction was tested for the improvement of hepatic enzyme alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activity. The BuOH extracts (CME) had highest activity which was used for the test of toxicity and efficacy of C. militaris. The enhancing effect of CME on the activity of ADH and ALDH was much more than medicine, drink, natural tea etc. Thus CME promoted the resolution of alcohol and acetaldehyde in rats, inducing recovery to normal condition rapidly. Furthermore, oral administration of CME effectively protected the carbon tetrachloride-induced acute hepatic injury as revealed by the hematological parameters (levels of sGOT and sGPT) and histological observation. CME was ascertained to be safe by regulatory toxicity studies of single dose toxicity and genotoxicity. These results suggest that CME would be useful for the maintaining normal hepatic activity as a functional health food.

Bioleaching of Mn(II) from Manganese Nodules by Bacillus sp. MR2 (Bacillus sp. MR2에 의한 망간단괴의 생물용출)

  • Choi, Sung-Chan;Lee, Ga-Hwa;Lee, Hong-Keum
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.411-415
    • /
    • 2009
  • Some microorganisms are capable of leaching Mn(II) from nonsulfidic manganese ores indirectly via nonenzymatic processes. Such reductive dissolution requires organic substrates, such as glucose, sucrose, or galactose, as a source of carbon and energy for microbial growth. This study investigated characteristics of Mn(II) leaching from manganese nodules by using heterotrophic Bacillus sp. strain MR2 provided with corn starch as a less-expensive substrate. Leaching of Mn(II) at 25.6 g Mn(II) $kg^{-1}$ nodule $day^{-1}$ was accompanied with cell growth, but part of the produced Mn(II) re-adsorbed onto residual $MnO_2$ particles after 24 h. Direct contact of cells to manganese nodule was not necessary as a separation between them with a dialysis tube produced similar amount [24.6 g Mn(II) $kg^{-1}$ nodule $day^{-1}$]. These results indicated an involvement of extracellular diffusible compound(s) during Mn(II) leaching by strain MR2. In order to optimize a leaching process we tested factors that influence the reaction, and the most efficient conditions were $25\sim35^{\circ}C$, pH 5~7, inoculum density of 1.5~2.5% (v/v), pulp density of 2~3 g/L, and particle size <75 ${\mu}m$. Although Mn(II) leaching was enhanced as particle size decrease, we suggest <212 ${\mu}m$ as a proper size range since more grinding means more energy consumption The results would help for the improvement of bioleaching of manganese nodule as a less expensive, energy-efficient, and environment-friendly technology as compared to the existing physicochemical metal recovery technologies.

Construction of Genetic Linkage Map and Identification of Quantitative Trait Loci in Populus davidiana using Genotyping-by-sequencing (Genotyping-by-sequencing 기법을 이용한 사시나무(Populus davidiana) 유전연관지도 작성 및 양적형질 유전자좌 탐색)

  • Suvi Kim;Yang-gil Kim;Dayoung Lee;Hye-jin Lee;Kyu-Suk Kang
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.1
    • /
    • pp.40-56
    • /
    • 2023
  • Tree species within the Populus genus grow rapidly and have an excellent capacity to absorb carbon, conferring substantial ability to effective purify the environment. Poplar breeding can be achieved rapidly and efficiently if a genetic linkage map is constructed and quantitative trait loci (QTLs) are identified. Here, a high-density genetic linkage map was constructed for the control pollinated progeny using the genotyping-by-sequencing (GBS) technique, which is a next-generation sequencing method. A search was also performed for the genes associated with quantitative traits located in the genetic linkage map by examining the variables of height and diameter at root collar, and resilience to insect damage. The height and diameter at root collar were measured directly, while the ability to recover from insect damage was scored in a 4-year-old breeding population of aspen hybrids (Odae19 × Bonghyeon4 F1) established in the research forest of Seoul National University. After DNA extraction, paternity was confirmed using five microsatellite markers, and only the individuals for which paternity was confirmed were used for the analysis. The DNA was cut using restriction enzymes and the obtained DNA fragments were prepared using a GBS library and sequenced. The analyzed results were sorted using Populus trichocarpa as a reference genome. Overall, 58,040 aligned single-nucleotide polymorphism (SNP) markers were identified, 17,755 of which were used for mapping genetic linkages. The genetic linkage map was divided into 19 linkage groups, with a total length of 2,129.54 cM. The analysis failed to identify any growth-related QTLs, but a gene assumed to be related to recovery from insect damage was identified on linkage group (chromosome) 4 through genome-wide association study.