• 제목/요약/키워드: Carbon paste electrode

검색결과 115건 처리시간 0.021초

Electroanalytical Applications Based on Carbon Nanotube/Prussian Blue Screen-printable Composite

  • Shim, Jun-Ho;Lee, Jae-Seon;Cha, Geun-Sig;Nam, Hak-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1583-1588
    • /
    • 2010
  • A single step fabrication process of carbon nanotube/Prussian Blue (CNT/PB) paste electrodes based on screen printing technology has been studied as an amperometric sensor for the determination of hydrogen peroxide and free chlorine. Compared to the classical carbon paste (CP) electrode, the CNT paste electrode greatly enhanced the response in the presence of hydrogen peroxide due to the electrocatalytic activity of the CNT. Based on the CNT/binder paste, PB was also incorporated into a network of CNT paste and characterized. The best electroanalytical properties of PB-mixed sensors to hydrogen peroxide were obtained with PB ratio of 10 wt % composition, which showed fast response time ($t_{90}{\leq}5$ s; 0.2 - 0.3 mM), low detection limit of 1.0 ${\mu}M$, good linear response in the range from $5.0{\times}10^{-5}$ - $1.0{\times}10^{-3}$ mol $L^{-1}$ ($r^2$ = 0.9998), and high sensitivity of -8.21 ${\mu}AmM^{-1}$. In order to confirm the enhanced electrochemical properties of CNT/PB electrode, the sensor was further applied for the determination of chlorine in water, which exhibited a linear response behavior in the range of 50 - 2000 ppb for chlorine with a slope of 1.10 ${\mu}Appm^{-1}$ ($r^2$ = 9971).

Electrochemical Detection of Pesticide in Living Plant and Fish Brain Cell

  • Lee, Chang-Hyun;Ly, Suw-Young
    • 한국환경과학회지
    • /
    • 제19권8호
    • /
    • pp.941-949
    • /
    • 2010
  • The three electrode system was used to detect the pesticide fenitrothion ($C_9H_{12}NO_5PS$. MW=277.24) using cyclic voltammetry (CV) and square wave anodic stripping voltammetry (SWASV). The working electrode was mercury immobilized on a carbon nanotube paste electrode (Hg-CNTPE). At the optimized condition, the limit of detection (LoD) was 0.6 ppt ($2.16{\times}10^{-12}\;M$), and the relative standard deviation was 0.035% (n=15). And there is more sensitive in detecting fenitrothion than common type carbon nanotube paste electrode. When it was implanted into the brain of live fish (carp), the existence of fenitrothion was measured without any destruction or damage of tissue.

Electrochemical Investigation of Animal Tissue Embedded Biosensor Bound with Ethylene-Propylene Rubber

  • Yoon, Kil-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2913-2917
    • /
    • 2010
  • When rubber dissolved in toluene was used as a binding material of graphite powder, the mechanical robustness of the carbon paste was guaranteed by the fast volatility of the solvent immediately after electrode construction. This characteristic of the rubber solution met qualifications for practical use of carbon paste electrodes and enabled the design of a new enzyme electrode bound with EPDM. In order to confirm whether the electrode shows quantitative electrochemical behaviors or not, its kinetic parameters, e. g. the symmetry factor (0.2), the exchange current density ($3.66\;{\mu}A/cm^2$), the capacity of the double layer ($2.0{\times}10^{-5}\;F$), the Michaelis constant ($4.39{\times}10^{-3}\;M$), the diffusion coefficient of substrate ($2.58{\times}10^{-12}\;cm^2/sec$), the time constant (0.018 sec) and other factors were investigated.

Simultaneous Voltammetric Determination of Mefenamic Acid and Paracetamol using Graphene Nanosheets/Nickel Oxide Nanoparticles Modified Carbon Paste Electrode

  • Naeemy, Ali;Gholam-Shahbazi, Rozhina;Mohammadi, Ali
    • Journal of Electrochemical Science and Technology
    • /
    • 제8권4호
    • /
    • pp.282-293
    • /
    • 2017
  • A new modified carbon paste electrode (CPE) was constructed based on nickel oxide nanoparticles (NiONPs) and graphene nanosheets (Gr) for simultaneous determination of paracetamol (PCM) and mefenamic acid (MFA) in aqueous media and pharmaceutical dosage forms. NiONPs were synthesized via a simple and inexpensive technique and characterized using X-ray diffraction method. Scanning electron microscopy was used for the characterization of the morphology of modified carbon paste electrode (NiONPs/Gr/CPE). Voltammetric studies suggest that the NiONPs and Gr provide a synergistic augmentation that can increase current responses by improvement of electron transfers of these compounds on the NiONPs/Gr/CPE surface. Using cyclic voltammetry, the NiONPs/Gr/CPE showed good sensitivity and selectivity for the determination of PCM and MFA in individually or mixture standard samples in the linear range of $0.1-30{\mu}g\;mL^{-1}$. The resulted limit of detection and limit of quantification were 20 and $60ng\;mL^{-1}$ for PCM, 24 and $72ng\;mL^{-1}$ for MFA, respectively. The analytical performance of the NiONPs/Gr/CPE was evaluated for the determination of PCM and MFA in pharmaceutical dosage forms with satisfactory results.

DNA 고정 탄소나노튜브 페이스트전극의 물고기 세포속 테트라싸이클린에 정량 (Measuring Oxytetracycline Using a Simple Prepared DNA Immobilized on a Carbon Nanotube Paste Electrode in Fish Tissue)

  • 이수영;이장현;정영삼
    • 대한화학회지
    • /
    • 제51권5호
    • /
    • pp.412-417
    • /
    • 2007
  • DNA를 고정한 탄소나노튜브 페이스트 전극으로 옥시테트라싸이클린 항생제의 분석조건을 연구하였다. 사각 파형 벗김 전압전류법과 순환 전압 전류법을 사용하여 최적조건에서 1-10 ngL?1의 정량 가능 범위에 도달하였다. 벗김법 0.1 mgL?1 농도에서 15번 반복 측정하여 0.068%의 상대표준편차였으며, 벗김법 최적 분석 조건에서 0.4 ngL?1의 검출 한계를 얻었다. 개발된 결과를 양식어류의 세포에서 응용하였다.

Amperometric Determination of Urea Using Enzyme-Modified Carbon Paste Electrode

  • Yang, Jae-Kyeong;Ha, Kwang-Soo;Baek, Hyun-Sook;Lee, Shim-Sung;Seo, Moo-Lyong
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권10호
    • /
    • pp.1499-1502
    • /
    • 2004
  • An amperometric biosensor based on carbon paste electrodes (CPEs) for the determination of urea was constructed by enzyme (urease/GL-DH)-modified method. Urea was hydrolyzed to ${NH_4}^+$ by catalyzing urease onto the enzyme-modified electrode surface in sample solution. In the presence of ${\alpha}$-ketoglutarate and reduced nicotinamide adenine dinucleotide(NADH), a liberated ${NH_4}^+$ produce to L-glutamate and $NAD^+$ by Lglutamate dehydrogenase (GL-DH). After the chemical reaction was proceeded, the electrochemical reaction was occurred that an excess of the NADH was oxidized to $NAD^+$. The oxidation current of NADH was monitored at +1.10 volt vs. Ag/AgCl. An optimum conditions of biosensor were investigated: The optimum pH range for catalyzed hydrolysis reaction of urea was pH 7.0-7.4. The linear response range and detection limit were $2.0\;{\times}\;10^{-5}{\sim}2.0\;{\times}\;10^{-4}M\;and\;5.0\;{\times}\;10^{-6}M$, respectively. Another physiological species did not interfere, except L-ascorbic acid.

Square Wave Voltammetric Determination of Indole-3-acetic Acid Based on the Enhancement Effect of Anionic Surfactant at the Carbon Paste Electrode

  • Zhang, Sheng-Hui;Wu, Kang-Bing
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권9호
    • /
    • pp.1321-1325
    • /
    • 2004
  • Sodium dodecyl sulfate (SDS), an anionic surfactant, can strongly adsorb at the surface of a carbon paste electrode (CPE) via the hydrophobic interaction. In pH 3.0 $Na_2HPO_4$-citric acid buffer (Mcllvaine buffer) and in the presence of SDS, the cationic indole-3-acetic acid (IAA, $pK_a$ = 4.75) was highly accumulated at the CPE surface through the electrostatic interaction between the negative-charged head group of SDS and cationic IAA, compared with that in the absence of SDS. Hence, the oxidation peak current of IAA increases greatly and the oxidation peak potential shifts towards more negative direction. The experimental parameters, such as pH, varieties of surfactants, concentration of SDS, and scan rate were optimized for IAA determination. The oxidation peak current is proportional to the concentration of IAA over the range from $5\;{\times}\;10^{-8}$ mol/L to $2\;{\times}\;10^{-6}$ mol/L. The detection limit is $2\;{\times}\;10^{-8}$ mol/L after 3 min of accumulation. This new voltammetric method was successfully used to detect IAA in some plant leaves.