• Title/Summary/Keyword: Carbon nanotubes (CNTs)

Search Result 612, Processing Time 0.031 seconds

Preparation of Hybrid Beads Containing Polysulfone Modified with Carbon Nanotubes, Tributyl Phosphate and Di-(2-ethylhexyl)-phosphoric Acid and Removal Characteristics of Sr(II) (Polysulfone에 Carbon Nanotubes, Tributyl Phosphate와 Di-(2-ethylhexyl)-phosphoric Acid를 고정화한 하이브리드 비드의 제조와 Sr(II)의 제거 특성)

  • Kam, Sang-Kyu;Suh, Jung-Ho;Yun, Jong-Won;Lee, Min-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.264-269
    • /
    • 2018
  • PSf/D2EHPA/TBP/CNTs beads were prepared by immobilizing carbon nanotubes (CNTs) and two extractants, di-(2-ethylhexyl)-phosphoric acid (D2EHPA) and tributyl phosphate (TBP) on polysulfone (PSf). The prepared PSf/D2EHPA/TBP/CNTs beads were characterized by SEM, TGA, and FTIR. The removal rate of Sr(II) by PSf/D2EHPA/TBP/CNTs beads was well described by the pseudo-second-order kinetic model. The maximum removal capacity of Sr(II) obtained from Langmuir isotherm was found to be 5.52 mg/g. The results showed that the removal efficiency of Sr(II) by PSf/D2EHPA/CNTs beads prepared in this study was significantly improved compared to that of using PSf/D2EHPA/CNTs beads without TBP.

Synthesis of aligned and length-controlled carbon nanotubes by chemical vapor deposition

  • Park, Young Soo;Moon, Hyung Suk;Huh, Mongyoung;Kim, Byung-Joo;Kuk, Yun Su;Kang, Sin Jae;Lee, Seong Hee;An, Kay Hyeok
    • Carbon letters
    • /
    • v.14 no.2
    • /
    • pp.99-104
    • /
    • 2013
  • We investigated the effects of parametric synthesis conditions of catalysts such as sintering temperature, sorts of supports and compositions of catalysts on alignment and length-control of carbon nanotubes (CNTs) using catalyst powders. To obtain aligned CNTs, several parameters were changed such as amount of citric acid, calcination temperature of catalysts, and the sorts of supports using the combustion method as well as to prepare catalyst. CNTs with different lengths were synthesized as portions of molybdenum and iron using a chemical vapor deposition reactor. In this work, the mechanisms of alignment of CNTs and of the length-control of CNTs are discussed.

Preparation, Properties and Application of Polyamide/Carbon Nanotube Nanocomposites

  • Chen, Peng;Kim, Hun-Sik;Jin, Hyoung-Joon
    • Macromolecular Research
    • /
    • v.17 no.4
    • /
    • pp.207-217
    • /
    • 2009
  • The discovery of carbon nanotubes(CNTs) has opened up exciting opportunities for the development of novel materials with desirable properties. The superior mechanical properties and excellent electrical conductivity make CNTs a good filler material for composite reinforcement. However, the dispersal of CNTs in a polymer solution or melt is difficult due to their tendency to agglomerate. Many attempts have been made to fully utilize CNTs for the reinforcement of polymeric media. Therefore, different types of polymer/CNTs nanocomposites have been synthesized and investigated. This paper reviews the current progress in the preparation, properties and application of polyamide/CNTs(nylon/CNTs) nanocomposites. The effectiveness of different processing methods has increased the dispersive properties of CNTs and the amelioration of their poor interfacial bonding. Moreover, the mechanical properties are significantly enhanced even with a small amount of CNTs. This paper also discusses how reinforcement with CNTs improves the electrical thermal and optical properties of nylon/CNTs nanocomposites.

A review of the preparation and properties of carbon nanotubes-reinforced polymer compositess

  • Jin, Fan-Long;Park, Soo-Jin
    • Carbon letters
    • /
    • v.12 no.2
    • /
    • pp.57-69
    • /
    • 2011
  • Carbon nanotubes (CNTs) have high Young's modulus, low density, and excellent electrical and thermal properties, which make them ideal fillers for polymer composites. Homogeneous dispersion of CNTs in a polymer matrix plays a crucial role in the preparation of polymer composites based on interfacial interactions between CNTs and the polymer matrix. The addition of a small amount of CNTs strongly improves the electrical, thermal, and mechanical properties of the composites. This paper aims to review the processing technology and improvement of properties of CNT-reinforced polymer composites.

Theoretical study on electrical behavior of carbon chain inserted single-walled carbon nanotubes compared with Pt doped one

  • Cui, Hao;Zhang, Xiaoxing;Xiao, Hanyan;Tang, Ju
    • Carbon letters
    • /
    • v.25
    • /
    • pp.55-59
    • /
    • 2018
  • Carbon chain inserted carbon nanotubes (CNTs) have been experimentally proven having undergone pronounced property change in terms of electrical conductivity compared with pure CNTs. This paper simulates the geometry of carbon chain inserted CNTs and analyzes the mechanism for conductivity change after insertion of carbon chain. The geometric simulation of Pt doped CNT was also implemented for comparison with the inserted one. The results indicate that both modification by Pt atom on the surface of CNT and addition of carbon chain in the channel of the tube are effective methods for transforming the electrical properties of the CNT, leading to the redistribution of electron and thereby causing the conductivity change in obtained configurations. All the calculations were obtained based on density functional theory method.

Surface States and Field Emission Properties of Oxygen Plasma Treated Carbon Nanotubes (산소 플라즈마 처리한 탄소나노튜브의 표면상태와 전계방출 특성)

  • Lee, Sunwoo;Lee, Boong-Joo;Park, Gu-Bum;Shin, Paik-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.376-379
    • /
    • 2013
  • Multi-walled carbon nanotubes (MWCNTs) were synthesized using catalytic chemical vapor deposition (CVD) method. Oxygen plasma treatment was applied to modify surface state of the CNTs synthesized for improvement of field emission performance. Surface state of the plasma treated CNTs was studied by X-ray photoelectron spectroscopy (XPS). The surface states of the CNTs were changed as a function of plasma treatment time. The oxygen related carbon shift was moved toward higher binding energy with the plasma treatment time. This result implies that the oxygen plasma treatment changes the surface state effectively. While any shift in carbon 1s peak was not detected for the as grown CNTs, oxygen related carbon shift was detected for the plasma treated CNTs. Carbon shift implies that closed CNT tips were opened by the oxygen plasma and reacted with oxygen species. Since the field emission occurs at pentagons or dangling bonds of the CNT tips, the increase of carbon-oxygen bonds plays an important role in field emission behavior by increasing the number of electron emission sites resulting in improvement of the field emission performance.

Tribological Property of Surface Modified Carbon Nanotube Reinforced Polymer Matrix Composites (표면 개질화된 탄소나노튜브 강화 고분자 복합재료의 마모 특성)

  • Park, Joo-Hyuk;Abu Bakar, Sulong
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.302-305
    • /
    • 2005
  • Various carbon nanotubes (CNTs) are added into the epoxy matrix as reinforcements to investigate the effect on the wear behavior. Effects to the tribological properties of different loading concentrations and types of surface modification are investigated by using a linear reciprocal wear tester. As increasing the concentration of CNTs shows the reduction of the wear loss. Moreover, surface modified CNTs give better tribological property than as produced CNTs. It is due that the functional groups on the surface of CNTs increase the interfacial bonding between CNTs and epoxy matrix through chemical bonding. Changes in worn surface morphology are observed by optical microscope and SEM to investigate the wear behavior. CNTs in the epoxy matrix near the surface are exposed and it becomes the lubricating working film on the worn surface. It reduces the friction and results in the lower surface roughness morphology in the epoxy matrix as increasing the contents of the CNTs.

The Effect of Catalysts merged with alumina on the Growing Characteristics of Carbon Nanotubes using AAO templates

  • Lee, In-Wha;Lee, Tae-Young;Yang, Ji-Hoon;Ha, Byoung-Ho;Yoo, Ji-Beom;Kim, Seong-Kyu;Park, Chong-Yun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.697-700
    • /
    • 2002
  • Porous anodic aluminum oxide(AAO) templates prepared by anodizing method were used for growing multiwalled carbon nanotubes(CNTs). AAO templates with the homogeneous pore diameter and length were obtained by two step anodizing technique. Using AAO templates, vertically well-ordered two-dimensional carbon nanotube arrays were fabricated. We investigated the field emission property of CNTs grown using different catalyst metals in vacuum chamber (<$10^{-7}$ Torr) on AAO Template. To explain the different emission property, the surface reaction between catalysts and alumina pores which inserted carbon species of $C_2H_2$ using High resolution transmission electron microscopy (HRTEM) was studied.

  • PDF

The characteristics of grown carbon nanotubes by controlled catalyst preparation at the catalytic chemical vapor deposition (촉매제어를 통한 촉매화학기상증착법으로 성장시킨 탄소나노튜브의 특성분석)

  • Kim, Jong-Sik;Kim, Gwan-Ha;Kim, Chang-Il
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1378-1379
    • /
    • 2006
  • Carbon nanotubes (CNTs) with few defects and very small amount of amorphous carbon coating have been synthesized by catalytic decomposition of acetylene in $H_2$ over well-dispersed metal particles supported on MgO. The yield, quality and diameters of CNTs were obtained by control of catalyst metal compositions to be used. The optimization condition of carbon nanotubes with high yield is when Co and Mo are in a 1:1 ratio and Fe metal contents to Co is increased on magnesium oxide support. It is also found that the diameter of the as-prepared CNTs can be controlled mainly by adjusting the molar ratio of Fe-Mo, Co-Fe, and Co-Mo versus the MgO support. Our results indicated that desired diameter distribution of CNTs is obtained by choosing or combining the catalyst to be employed.

  • PDF

Field Emission Characteristics and Growth Analysis of Carbon Nanotubes by Plasma-enhanced Chemical Vapor Deposition (플라즈마 화학 기상 증착법을 이용한 탄소나노튜브의 성장 분석 및 전계방출 특성)

  • 오정근;주병권;김남수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1248-1254
    • /
    • 2003
  • Carbon nanotubes(CNTs) are grown by using Co catalyst metal. CNTs fabricated by PECVD(plasma enhanced chemical vapor deposition) method are studied in terms of surface reaction and surface structure by TEM and Raman analysing method and ate analysed in its electrical field emission characteristics with variation of space between anode and cathode. Acetylene(C$_2$H$_2$) gas is used as the carbon source, while ammonia and hydrogen gas are used as catalyst and dilution gas. The CNTs grown by hydrogen(H$_2$) gas plasma indicates better vortical alignment, lower temperature process, and longer tip, compared to that grown by ammonia(NH$_3$) gas plasma. The CNTs fabricated with Co(cobalt) catalyst metal and PECVD method show the multiwall structure in mid-circle type in tip-end and the inner vacancy of 10nm. Emission properties of CNTs indicate the turn-on field to be 2.6 V/${\mu}{\textrm}{m}$ We suggest that CNTs can be possibly applied to the emitter tip of FEDs and high brightness flat lamp because of low temperature CNTs growth, low turn-on field.