• Title/Summary/Keyword: Carbon nanotube probe

Search Result 49, Processing Time 0.038 seconds

Nondestructive Damage Sensitivity of Carbon Nanotube and Nanofiber/Epoxy Composites Using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 음향방출을 이용한 탄소 나노튜브와 나노섬유 강화 에폭시 복합재료의 비파괴적 손상 감지능)

  • Kim, Dae-Sik;Park, Joung-Man;Lee, Jae-Rock;Kim, Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.117-120
    • /
    • 2003
  • Electro-micromechanical techniques were applied using four-probe method for carbon nanotube (CNT) or nanofiber (CNF)/epoxy composites with their content. Carbon black (CB) was used to compare with CNT and CNF. The fracture of carbon fiber was detected by nondestructive acoustic emission (AE) relating to electrical resistivity for double-matrix composites test. Sensing for fiber tension was performed by electro-pullout test under uniform cyclic strain. The sensitivity for fiber damage such as fiber fracture and fiber tension was the highest for CNT/epoxy composites, and in CB case they were the lowest compared with CNT and CNF. Reinforcing effect of CNT obtained from apparent modulus measurement was the highest in the same content. The results obtained from sensing fiber damage were correlated with the morphological observation of nano-scale structure using FE-SEM. The information on fiber damage and matrix deformation and reinforcing effect of carbon nanocomposites could be obtained from electrical resistivity measurement as a new concept of nondestructive evaluation.

  • PDF

Improvement of Electrical Conductivity of Transparent Conductive Single-Walled Carbon Nanotube Films Fabricated by Surfactant Dispersion

  • Lee, Seung-Ho;Kim, Myoung-Su;Goak, Jeung-Choon;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.17-17
    • /
    • 2009
  • Single-walled carbon nanotubes (SWCNTs) have attracted much attention as promising materials for transparent conducting films (TCFs), thanks to their superior electrical conductivity, high mechanical strength, and complete flexibility. The CNT-based TCFs can be used in a variety of application fields as flexible, transparent electrodes, including touch panel screens, flexible electronics, transparent heaters, etc. First of all, this study investigated the effect of a variety of surfactants on the dispersion of SWCNTs in an aqueous solution. Following the optimization of the dispersion by surfactants, flexible TCFs were fabricated by spraying the CNT suspension onto poly(ethylene terephthalate) (PET) substrates. The sheet resistances of the TCFs having different surfactants were investigated with treatment in nitric acid ($HNO_3$) whose concentration and period of treatment time were varied. It seems that the $HNO_3$ removes the surfactants from and is simultaneously doped into the SWCNT network, reducing the contact resistance between CNTs. TCFs were characterized by UV-VIS spectroscopy, thermogravimetric analyzer (TGA), scanning electron microscopy (SEM), and four-point probe.

  • PDF

Improvement of Electrical Conductivity of Transparent Conductive Single-Walled Carbon Nanotube Films Fabricated by Surfactant Dispersion

  • Lee, Seung-Ho;Kim, Myoung-Su;Goak, Jeung-Choon;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.254-254
    • /
    • 2009
  • Single-walled carbon nanotubes (SWCNTs) have attracted much attention as promising materials for transparent conducting films (TCFs), thanks to their superior electrical conductivity, high mechanical strength, and complete flexibility. The CNT-based TCFs can be used in a variety of application fields as flexible, transparent electrodes, including touch panel screens, flexible electronics, transparent heaters, etc. First of all, this study investigated the effect of a variety of surfactants on the dispersion of SWCNTs in an aqueous solution. Following the optimization of the dispersion by surfactants, flexible TCFs were fabricated by spraying the CNT suspension onto poly(ethylene terephthalate) (PET) substrates. The sheet resistances of the TCFs having different surfactants were investigated with treatment in nitric acid ($HNO_3$) whose concentration and period of treatment time were varied. It seems that the $HNO_3$ removes the surfactants from and is simultaneously doped into the SWCNT network, reducing the contact resistance between CNTs. TCFs were characterized by UV-VIS spectroscopy, thermogravimetric analyzer (TGA), scanning electron microscopy (SEM), and four-point probe.

  • PDF

Direct Fabrication of the Scanning Probe Tip with Multi­Walled Carbon Nanotubes Using Dielectrophoresis

  • Lee Hyung-Woo;Han Chang-Soo;Lee Eung-Sug;Chul Youm;Kim Jae Ho;Kim Soo-Hyun;Kwak Yoon-Keun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.50-54
    • /
    • 2005
  • We report a simple, low cost, and reliable method for assembling a multi-walled nanotube (MWNT) to the end of a metal coated scanning probe microscopy (SPM) tip. By dropping the MWNT solution and applying an electric field between an SPM tip and an electrode, MWNTs which were dispersed into a dielectric solution were directly assembled onto the apex of the SPM tip due to the attraction by the dielectrophoretic force. The effective measurement of a MWNT -attached SPM tip was demonstrated by direct comparison with AFM images of a standard sample with a bare AFM tip.

A Study on the Evaluation Method of Shielding Effectiveness using NFS in Near-Field Tests (근거리장에서 NFS를 사용한 차폐효율 평가방법에 관한 연구)

  • Park, Jungyeol;Song, Inchae;Kim, Boo-Gyoun;Kim, Eun-Ha
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.8
    • /
    • pp.76-82
    • /
    • 2016
  • In this paper, we evaluated shielding effectiveness (SE) of carbon nanotube (CNT) film using near field scanning (NFS) in near field analysis. We adopted CNT film with deposit carbon density of 5% and thickness of 1mm for evaluation of shielding characteristic. Using a test coupon analogized to an actual IC package, we measured SE according to measuring position and SE according to distances between the CNT film and the test coupon. As a result, the measured SE in the near field varied with frequency. Especially, the measured electric field SE in the center of the test coupon is better than that of the measured edge point of the test coupon where it is affected by fringing effect. The results show that the measured SE in the near field is affected not only by frequency but also by measurement environment such as position and height of the probe and height of shielding film. In conclusion, we should choose proper methods for SE measurement considering interference distance in the electronic control system because there is little correlation between the proposed evaluation method in the near field and ASTM D 4935-10.

Laser Patterning of Vertically Grown Carbon Nanotubes (수직성장된 탄소나노튜브의 선택적 패터닝)

  • Chang, Won Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1171-1176
    • /
    • 2012
  • The selective patterning of a carbon nanotube (CNT) forest on a Si substrate has been performed using a femtosecond laser. The high shock wave generated by the femtosecond laser effectively removed the CNTs without damage to the Si substrate. This process has many advantages because it is performed without chemicals and can be easily applied to large-area patterning. The CNTs grown by plasma-enhanced chemical vapor deposition (PECVD) have a catalyst cap at the end of the nanotube owing to the tip-growth mode mechanism. For the application of an electron emission and biosensor probe, the catalyst cap is usually removed chemically, which damages the surface of the CNT wall. Precise control of the femtosecond laser power and focal position could solve this problem. Furthermore, selective CNT cutting using a femtosecond laser is also possible without any phase change in the CNTs, which is usually observed in the focused ion beam irradiation of CNTs.

Effect of Ball Milling on Photosensitive Carbon Nanotube Pastes and Their Field Emission Properties (감광성 CNT paste에 대한 저에너지 Ball Milling 처리 효과)

  • Jang, Eun-Soo;Lee, Han-Sung;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.154-154
    • /
    • 2008
  • Although the screen printing technology using photosensitive carbon nanotube (CNT) paste has many advantages such as low cost, simple process, uniform emission, and capability of mass production, the CNT paste needs to be improved further in CNT dispersion, printability, adhesion, electrical conductivity, population of CNT emitters, etc. Ball milling has been frequently employed to prepare the CNT paste as ball milling can mix its ingredients very well and easily cut the long, entangled CNTs. This study carried out a parametric approach to fabricating the CNT paste in terms of low-energy ball milling and a paste composition. Field emission properties of the CNT paste was characterized with CNT dispersion and electrical conductivity which were measured by a UV-Vis spectrophotometer and a 4-point probe method, respectively. Main variables in formulating the CNT paste include a length of milling time, and amounts of CNTs and conductive inorganic fillers. In particular, we varied not only the contents of conductive fillers but also used two different sizes of filler particles of ${\mu}m$ and nm ranges. Among many variations of conductive fillers, the best field emission characteristics occurred at the 5 wt% fillers with the mixing ratio of 3:1 for ${\mu}m$-and nm-sizes. The amount and size of fillers has a great effect on the morphology, processing stability, and field emission characteristics of CNT emitter dots. The addition a small amount of nm-size fillers considerably improved the field emission characteristics of the photosensitive CNT paste.

  • PDF

Effect of various carbon fillers on the electrical conductivity of PEMFC Separator made of thermoplastic composite (열가소성 수지와 carbon 충전제에 따른 PEMFC용 Separator의 전기 전도도 특성 연구)

  • Yoon, Yong-Hun;Lim, Seung-Hyun;Kim, Dong-Hak
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1241-1244
    • /
    • 2010
  • 본 논문에서는 Base resin으로 열가소성 고분자인 PP(Polypropylene)를 사용하였으며, 물리적 및 화학적 특성을 증대시키기 위해 주 첨가제로는 Expanded graphite와 보조 첨가제로 Multiwall carbon nanotube를 사용하여 2가지의 복합 소재를 제조 하였다. 제조한 복합소재를 활용하여 compression molding을 하였으며, 각 함량별 시편을 four point probe 장치를 사용하여 전기전도도를 측정 비교 하였다.

  • PDF

The Quantitative Characterization of the Dispersion State of Single-Walled Carbon Nanotubes (단일벽 탄소나노튜브의 분산도 정량적 평가)

  • Yoon, Do-Kyung;Choi, Jae-Boong;Kim, Young-Jin;Baik, Seung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.4
    • /
    • pp.483-489
    • /
    • 2007
  • We have investigated quantitative measurement techniques of the degree of dispersion of single-walled carbon nanotubes (SWNTs). SWNTs were suspended in aqueous media using a sodium dodecyl sulfate (SDS) surfactant. SWNTs with different dispersion states were prepared by controlling the intensity and time of sonication and centrifugation. The laser spectroscopic techniques were employed to characterize the dispersion state; i.e., raman fluorescence and absorption spectroscopic techniques. Raman spectroscopy has been used to probe the dispersion and aggregation state of SWNTs in solution. Individually suspended SWNTs show increased fluorescence peaks and decreased roping peaks at a raman shift 267 $cm^{-1}$ compared with the samples containing bundles of SWNTs. The ultraviolet-visible-near infrared (UV-vis-NIR) absorption spectrum of decanted supernatant samples show sharp van Hove singularity peaks

Preparation of Sheet with CNT for EMI Shielding and Its EMI Shielding Property (CNT가 함유된 전자파 차폐흡수시트의 제조 및 전자파 차폐특성)

  • Chae, Seong-Jeong;Cho, Bum-Rae;Hong, Byung-Pyo;Lee, Byoung-Soo;Byun, Hong-Sik
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.430-434
    • /
    • 2010
  • The sheet for electromagenetic interference (EMI) shielding was prepared with slurry made by the mixture of binder, methyl ethyl ketone, cyclohexanone and metal powder. We tried to enhance the shielding efficiency by adding carbon nanotube (CNT), which has known as highly conducting material. Surface and component analyses were carried out with SEM and EDS, respectively. The electric characteristics and EMI shielding efficiencies were measured with 4-point probe measurement and EMI efficiency measurement equipment. The sheet with 2% CNT addition showed the lowest electrical resistance, $13.13{\Omega}}{\cdot}cm$. It also showed the highest EMI shielding efficiency of 63 dB.