• 제목/요약/키워드: Carbon nanostructure

검색결과 60건 처리시간 0.029초

탄소 나노튜브를 활용한 나노 구조물에 대한 시뮬레이션 연구 (A Study of Nanostructure by Carbon Nanotube Simulation)

  • 이준하;이흥주;송영진;윤영식
    • 반도체디스플레이기술학회지
    • /
    • 제4권3호
    • /
    • pp.11-15
    • /
    • 2005
  • This paper shows that carbon nanotubes can be applied to a nanopipette. Nano space in atomic force microscope multi wall carbon nanotube tips is filled with molecules and atoms with charges and then, the tips can be applied to nanopipette when the encapsulated media flow off under applying electrostatic farces. Since the nano space inside the tips can be refilled, the tips can be permanently used in ideal conditions of no chemical reaction and no mechanical deformation. Molecular dynamics simulations for nanopipette applications demonstrated the possibility of nano-lithography or single-metallofullerene-transistor array fabrication.

  • PDF

Carbon Nitrides 나노구조체를 이용한 CO2 포집 연구의 최신동향 (A Review on Nanostructured Carbon Nitrides for CO2 Capture)

  • 하성진;이동기;김문희;박대환
    • 세라미스트
    • /
    • 제22권3호
    • /
    • pp.316-327
    • /
    • 2019
  • Carbon nitride has drawn broad interdisciplinary attention in diverse fields such as catalyst, energy storage, gas adsorption, biomedical sensing and even imaging. Intensive studies on carbon dioxide (CO2) capture using carbon nitride materials with various nanostructures have been reported since it is needed to actively remove CO2 from the atmosphere against climate change. This is mainly due to its tunable structural features, excellent physicochemical properties, and basic surface functionalities based on the presence of a large number of -NH or -NH2 groups so that the nanostructured carbon nitrides are considered as suitable materials for CO2 capture for future utilization as well. In this review, we summarize and highlight the recent progress in synthesis strategies of carbon nitride nanomaterials. Their superior CO2 adsorption capabilities are also discussed with the structural and textural features. An outlook on possible further advances in carbon nitride is also included.

이종 원자 도핑 탄소 나노재료를 이용한 PEMFC Cathode용 촉매 합성 및 평가 (Heteroatom-doped carbon nanostructures as non-precious cathode catalysts for PEMFC)

  • 조가영;상가라주 샨무감
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.406-409
    • /
    • 2012
  • Recently, enormous research efforts have been focused on the development of non-precious catalysts to replace Pt for electrocatalytic oxygen reduction reaction (ORR), and to reduce the cost of proton exchange membrane fuel cells (PEMFCs). In recent years, heteroatom (N, B, and P) doped carbon nanostructures have been received enormous importance as a non-precious electrode materials for oxygen reduction. Doping of foreign atom into carbon is able to modify electronic properties of carbon materials. In this study, nitrogen and boron doped carbon nanostructures were synthesized by using a facile and cost-effective thermal annealing route and prepared nanostructures were used as a non-precious electrocatalysts for the ORR in alkaline electrolyte. The nitrogen doped carbon nanocapsules (NCNCs) exhibited higher activity than that of a commercial Pt/C catalyst, excellent stability and resistance to methanol oxidation. The boron-doped carbon nanostructure (BC) prepared at $900^{\circ}C$ showed higher ORR activity than BCs prepared lower temperature (800, $700^{\circ}C$). The heteroatom doped carbon nanomaterials could be promising candidates as a metal-free catalysts for ORR in the PEMFCs.

  • PDF

전자파 차폐용 하이브리드 탄소나노물질 (Hybrid Carbon Nanomaterials for Electromagnetic Interference Shielding)

  • 이시화;오일권
    • Composites Research
    • /
    • 제29권4호
    • /
    • pp.138-144
    • /
    • 2016
  • 최근 유해한 전자파 문제에 대응하여 사용되는 전자파 차폐 물질에 대한 관심이 대두되고 있다. 우선, 전통적으로 사용되는 전도성이 높은 금속 기반 물질들이 있지만, 무겁고 부식성에 대한 한계가 있기에 이를 극복할 수 있는, 가볍고 기계적 강도가 우수하고, 부식에 대한 내구성이 있으며 전기 전도성이 높은 탄소계 물질들이 대두되었다. 탄소계 물질을 phase별로 나누어, 그래핀, CNT와 같은 1-phase 단일계 탄소계 물질부터 단일계 탄소물질에 금속이 추가되거나, 서로 다른 탄소계 물질이 혼합된 2-phase 탄소계 물질, 서로 다른 탄소계 물질에 기능성 금속이 추가된 3-phase 탄소계 물질순으로 각각의 특징을 소개하였다.

HIP에 의해 합성된 CN nanostructures의 구조 및 전계방출 특성 (Structure and Electron Emission Properties of CN Nanostructures Obtained by HIP Apparatus)

  • 오정근;이양두;문승일;양석현;이윤희;김남수;주병권
    • 한국전기전자재료학회논문지
    • /
    • 제16권8호
    • /
    • pp.723-730
    • /
    • 2003
  • The CN(carbon nitrogen) nanofibers were formed by HIP(high isostatic pressure) process. From the field emission measurement, CN nanofibers shows an excellent characteristics of emitter, better than CNTs and carbon nanofibers. The structures obtained can be divided into three groups : bamboo-like fibers, corrugated structures and bead necklace-like fib res. Emission properties of CN nanofibers were investigated for spacing, between anode and cathode, variation. Turn-on fields was 1.4 v/$\mu\textrm{m}$. The time reliability and light emission test were carried out for about 100 hours. We suggest that CN nanofibers can be possibly applied to the high brightness flat lamp because of low turn-on field and time reliability

Microstructural behavior and mechanics of nano-modified cementitious materials

  • Archontas, Nikolaos D.;Pantazopoulou, S.J.
    • Advances in concrete construction
    • /
    • 제3권1호
    • /
    • pp.15-37
    • /
    • 2015
  • Ongoing efforts for improved fracture toughness of engineered cementitious materials address the inherent brittleness of the binding matrix at several different levels of the material's geometric scale through the addition of various types of reinforcing fibers. Crack control is required for crack widths that cover the entire range of the grain size spectrum of the material, and this dictates the requirement of hybrid mixes combining fibers of different size (nano, micro, macro). Use of Carbon Nano-Tubes (CNT) and Carbon Nano-Fibers (CNFs) as additives is meant to extend the crack-control function down to the nanoscale where cracking is believed to initiate. In this paper the implications of enhanced toughness thus attained at the material nanostructure are explored, with reference to the global smeared constitutive properties of the material, through consistent interpretation of the reported experimental evidence regarding the behavior of engineered cementitious products to direct and indirect tension.

Self-Organized Synthesis and Mechanism of SnO2@Carbon Tube-Core Nanowire

  • Luo, Minting;Ma, Yong-Jun;Pei, Chonghua;Xing, Yujing;Wen, Lixia;Zhang, Li
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2535-2538
    • /
    • 2012
  • $SnO_2@carbon$ tube-core nanowire was synthesized via a facile self-organized method, which was in situ by one step via Chemical Vapor Deposition. The resulting composite was characterized by scanning electron microscopy, X-ray diffraction and transmission electron microscope. The diameter of the single nanowire is between 5 nm and 60 nm, while the length would be several tens to hundreds of micrometers. Then X-ray diffraction pattern shows that the composition is amorphous carbon and tin dioxide. Transmission electron microscope images indicate that the nanowire consists of two parts, the outer carbon tube and the inner tin dioxide core. Meanwhile, the possible growth mechanism of $SnO_2@carbon$ tube-core nanowire is also discussed.

Development of Nanostructured Light-Absorbers for Ultrasound Generation by Using a Solution-Based Process

  • Sang, Pil Gyu;Heo, Jeongmin;Song, Ju Ho;Thakur, Ujwal;Park, Hui Joon;Baac, Hyoung Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.377-377
    • /
    • 2016
  • Under nanosecond-pulsed laser irradiation, light-absorbing thin films have been used for photoacoustic transmitters for ultrasound generation. Especially, nanostructured absorbers are attractive due to high optical absorption and efficient thermoacoustic energy conversion: for example, 2-dimensional (2-D) gold nanostructure array, synthetic gold nanoparticles, carbon nanotubes (CNTs), and reduced graphene oxides. Among them, CNT has been used to fabricate a composite film with polydimethylsiloxane (PDMS) that exhibits excellent photoacoustic conversion performance for high-frequency, high-amplitude ultrasound generation. Previously, CNT-PDMS nanocomposite films were made by using a high-temperature chemical vapor deposition (HTCVD) process for CNT growth. However, this approach is not suitable to fabricate large-area CNT films (>several cm2). This is because a chamber dimension of HTCVD is limited and also the process often causes nonuniform CNT growth when the film area increases. As an alternative approach, a solution-based process can be used to overcome these issues. We develop PDMS composite transmitters, based on the solution process, using several nanostructured light-absorbers such as CNTs, nanoink powders, and imprinted regular arrays of gold nanostructure. We compare fabrication processes of each composite transmitters and photoacoustic output performance.

  • PDF

Tunable Nanostructure of TiO2/Reduced Graphene Oxide Composite for High Photocatalysis

  • He, Di;Li, Yongli;Wang, Jinshu;Yang, Yilong;An, Qier
    • Applied Microscopy
    • /
    • 제46권1호
    • /
    • pp.37-44
    • /
    • 2016
  • In this study $TiO_2$/reduced graphene oxide ($TiO_2/rGO$) bipyramid with tunable nanostructure was fabricated by two-step solvothermal process and subsequent heat-treatment in air. The as-synthesized anatase $TiO_2$ nanocrystals possessed morphological bipyramid with exposed dominantly by (101) facets. Polyethylenimine was utilized during the combination of $TiO_2$ and graphene oxide (GO) to tune the surface charge, hindering the restack of graphene during solvothermal process and resulting in 1 to 5 layers of rGO wrapped on $TiO_2$ surface. After a further calcination, a portion of carbon quantum dots (CQDs) with a diameter about 2 nm were produced owing to the oxidizing and cutting of rGO on $TiO_2$. The as-prepared $TiO_2/rGO$ hybrid showed a highly photocatalytic activity, which is about 3.2 and 7.7 times enhancement for photodegradation of methyl orange with compared to pure $TiO_2$ and P25, respectively. We assume that the improvement of photocatalysis is attributed to the chemical bonding between rGO/CQDs and $TiO_2$ that accelerates photogenerated electron-hole pair separation, as well as enhances light harvest.

마이크론 금속섬유 필터에서 탄소나노튜브의 직접 성장에 의한 나노구조체 합성 및 여과성능 (Synthesis of Nanostructures by Direct Growth of Carbon Nanotubes on Micron-sized Metal Fiber Filter and its Filtration Performance)

  • 이동근;박석주;박영옥;류정인
    • Korean Chemical Engineering Research
    • /
    • 제45권3호
    • /
    • pp.264-268
    • /
    • 2007
  • 마이크론 금속섬유 필터 표면상에 탄소나노튜브를 직접 합성 성장함으로써 마이크론 필터의 성능을 향상할 수 있었다. 탄소나노튜브는 합성조건에 따라 마이크론 섬유 주위를 덮는 덤불 나노구조체 또는 섬유 사이를 연결하는 망 형상의 나노구조체로 성장하였다. 탄소나노튜브가 성장한 금속필터와 탄소나노튜브가 성장하지 않은 금속필터의 여과성능을 측정하여 비교한 결과, 차압의 변화는 미미하나 여과효율은 더욱 향상되었고, 이는 탄소나노튜브가 오염 나노입자를 잡는 트랩으로 작용하였기 때문이다.