• 제목/요약/키워드: Carbon nanofiber composite

검색결과 41건 처리시간 0.019초

은 박막이 첨가된 전기방사법으로 제작한 PCL/MWCNTs 나노섬유의 전기적 특성 (Electrical Property of Electrospun PCL/MWCNTs Nanofiber with Additive Silver Thin Film)

  • 김진운;김경민;박경완;석중현
    • 한국전기전자재료학회논문지
    • /
    • 제31권4호
    • /
    • pp.238-243
    • /
    • 2018
  • A nanofiber was fabricated with carbon nanotubes for transparent electrodes. It was prepared with a composite solution of bio-molecules polycaprolactone (PCL) and multiwalled carbon nanotubes (MWCNTs) by electrospinning on a glass substrate, following which its electrical characteristics were investigated. The content of MWCNTs was varied during electrospinning, while that of PCL was fixed. Further, a nanometer-thick thin film of silver was deposited on the nanofiber layer using a thermal evaporator to improve the electrical characteristics; the sheet resistance significantly reduced after this deposition. The results showed that this carbon nanotube nanofiber has potential applications in biotechnology and as a flexible transparent display material.

전기저항 측정 방법을 이용한 표면 처리된 탄소 나노튜브와 나노 섬유 강화된 에폭시 복합재료의 비파괴적 감지능 평가 (Nondestructive Sensing Evaluation of Thermal Treated Carbon Nanotube and Nanofiber/Epoxy Composites Using Electrical Resistance Measurement)

  • 정진규;박종만;김대식;김태욱
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.15-18
    • /
    • 2004
  • Nondestructive damage sensing and mechanical properties for thermal treated carbon nanotube(CNT) and nanofiber(CNF)/epoxy composites were investigated using electro-micromechanical technique. Carbon black (CB) was used only for the comparison. Electro-micromechanical techniques were applied to obtain the fiber damage and stress transferring effect of carbon nanocomposites with their contents. Thermal treatment and temperature affected on apparent modulus and electrical properties on nanocomposites due to enhanced inherent properties of each CNMs. Coefficient of variation (COV) of volumetric electrical resistance can be used to obtain the dispersion degree indirectly for various CNMs. Dispersion and surface modification are very important parameters to obtain improved mechanical and electrical properties of CNMs for multifunctional applications. Further optimized functionalization and dispersion conditions will be investigated for the following work continuously.

  • PDF

Physical Properties of Graphite Nanofiber Filled Nylon6 Composites

  • Park, Eun-Ha;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • 제7권2호
    • /
    • pp.87-96
    • /
    • 2006
  • This paper describes the physical properties of filled Nylon6 composites resin with nano-sized carbon black particle and graphite nanofibers prepared by melt extrusion method. In improving adhesions between resin and fillers, the surface of the carbon filler materials were chemically modified by thermo-oxidative treatments and followed by treatments of silane coupling agent. Crystallization temperature and rate of crystallization increased with increases in filler concentration which would act as nuclei for crystallization. The silane treatments on the filler materials showed effect of reduction in crystallization temperature, possibly from enhancement in wetting property of the surface of the filler materials. Percolation transition phenomenon at which the volume resistivity was sharply decreased was observed above 9 wt% of carbon black and above 6 wt% of graphite nanofiber. The graphite nanofibers contributed to more effectively in an increase in electrical conductivity than carbon black did, on the other hand, the silane coupling agent negatively affected to the electrical conductivity due to the insulating property of the silane. Positive temperature coefficient (PTC) phenomenon, was observed as usual in other composites, that is, temperature increase results conductivity increase. The dispersity of the fillers were excellently approached by melt extrusion of co-rotational twin screw type and it could be illustrated by X-ray diffraction and SEM.

  • PDF

전기방사를 이용한 슈퍼캐퍼시터용 금속산화물/탄소나노섬유 복합체 (Electrospun Metal Oxide/Carbon Nanofiber Composite Electrode for Supercapacitor Application)

  • 양갑승;김보혜
    • 공업화학
    • /
    • 제26권3호
    • /
    • pp.239-246
    • /
    • 2015
  • 나노 탄소재료를 복합화하면 기존 재료의 특성을 유지하면서 그 효율을 극대화할 수 있다. 여기에 이종원소를 부가하면 전기화학적인 특성이 디자인되므로, 나노 탄소재료의 복합화를 통해 한 종류의 나노 재료로부터 여러 강점을 얻을 수 있다. 특히 탄소나노섬유와 금속산화물을 복합화하면 탄소나노섬유의 전기이중층 뿐만 아니라 금속산화물의 산화 환원 반응을 이용하여 비축전 용량, 고율 특성, 수명 특성이 향상되고 높은 수준의 출력밀도가 유지되는 고용량 슈퍼 캐퍼시터용 전극 소재를 개발할 수 있다. 본 총설에서는 탄소의 고출력특성과 금속산화물의 고에너지 특성이 동시에 발현되는 금속산화물계 탄소나노섬유복합체의 제법과 응용에 대한 최신연구를 다루도록 하겠다.

압출공정에 의한 탄소나노섬유/폴리프로필렌 복합재료의 기계적 특성 (Mechanical Property of Cabon Nanofiber/Polypropylene Composites by Melt-mixing Process)

  • 변준형;이상관;엄문관;민경식;송재은;이창훈
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.125-128
    • /
    • 2005
  • The dispersion of carbon nanofiber (CNF) was carried out by solution blending, mechanical mixing, and sonication. CNFs at levels of 5-50% fiber weight content were mixed with polypropylene (PP) powder, and then were melt-mixed using a twin-screw extruder. For the further alignment of fibers, extruded rods were stacked uni-directionally in the mold cavity for the compression molding. For the evaluation of mechanical properties of nanocomposites, tension, in-plane shear, and flexural tests were conducted. CNF/PP composites clearly showed reinforcing effect in the longitudinal direction. The tensile modulus and strength have improved by 100% and 40%, respectively for 50 % fiber weight content, and the flexural modulus and strength have increased by 120% and 25%, respectively for the same fiber weight content. The shear modulus showed 65% increase, but the strength dropped sharply by 40%. However, the property enhancement was not significant due to the poor adhesion between fiber and matrix. In the transverse direction, the tensile, flexural, and shear strength decreased as more fibers were added.

  • PDF

Carbon-Nanofiber Reinforced Cu Composites Prepared by Powder Metallurgy

  • Weidmueller, H.;Weissgaerber, T.;Hutsch, T.;Huenert, R.;Schmitt, T.;Mauthner, K.;Schulz-Harder, S.
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.321-326
    • /
    • 2006
  • Electronic packaging involves interconnecting, powering, protecting, and cooling of semiconductor circuits fur the use in a variety of microelectronic applications. For microelectronic circuits, the main type of failure is thermal fatigue, owing to the different thermal expansion coefficients of semiconductor chips and packaging materials. Therefore, the search for matched coefficients of thermal expansion (CTE) of packaging materials in combination with a high thermal conductivity is the main task for developments of heat sink materials electronics, and good mechanical properties are also required. The aim of this work is to develop copper matrix composites reinforced with carbon nanofibers. The advantages of carbon nanofibers, especially the good thermal conductivity, are utlized to obtain a composite material having a thermal conductivity higher than 400 W/mK. The main challenge is to obtain a homogeneous dispersion of carbon nanofibers in copper. In this paper, a technology for obtaining a homogeneous mixture of copper and nanofibers will be presented and the microstructure and properties of consolidated samples will be discussed. In order to improve the bonding strength between copper and nanofibers, different alloying elements were added. The microstructure and the properties will be presented and the influence of interface modification will be discussed.

그래핀/탄소나노섬유 코팅된 3D 프린팅 고분자 구조를 이용한 신축성 스트레인 센서 (Stretchable Strain Sensors Using 3D Printed Polymer Structures Coated with Graphene/Carbon Nanofiber Hybrids)

  • 나승찬;이현종;임태경;윤정민;석지원
    • Composites Research
    • /
    • 제35권4호
    • /
    • pp.283-287
    • /
    • 2022
  • 신축성 스트레인 센서는 웨어러블 기기나 건강 모니터링과 같은 미래 응용 분야에 적용하기 위하여 개발되고 있는데, 센서의 신뢰성을 높이기 위해 안정성과 반복성이 고려되어야 한다. 본 연구에서는 3D 프린팅을 통해 키리가미 패턴이 있는 고분자 구조를 제작하여 센서의 신축성과 히스테리시스를 개선하였다. 견고한 전도성 네트워크를 구현하기 위하여 그래핀과 탄소나노섬유를 혼합한 하이브리드 소재를 고분자 구조에 코팅하였다. 제작한 신축성 스트레인 센서는 32%의 스트레인에 대해 게이지팩터가 36을 보였으며, 1%부터 30%까지의 다양한 스트레인에 대해서 안정적인 저항 변화 응답을 나타냈다.

전기적-미세역학 시험법과 음향 방출을 이용한 탄소 나노튜브와 나노섬유 강화 에폭시 복합재료의 비파괴 손상 감지능 (Nondestructive Damage Sensitivity of Carbon Nanotube and Nanofiber/Epoxy Composites using Electro- Micromechanical Technique and Acoustic Emission)

  • 김대식;박종만;김태욱
    • 폴리머
    • /
    • 제28권4호
    • /
    • pp.285-290
    • /
    • 2004
  • 전기적-미세역학 시험법을 이용하여 탄소 나노튜브와 탄소 나노섬유로 강화된 에폭시 복합재료의 비파괴 손상 감지능에 대해 고찰하였다. 카본블랙은 탄소 나노튜브 및 탄소 나노섬유와 비교하기 위해 사용하였다. 두 기지 복합재료 시험에서 탄소 섬유의 파단은 전기저항 변화 측정과 함께 음향방출을 이용하여 동시에 감지하였고 탄소나노복합재료 내부에 함침된 탄소 섬유에 대한 응력 감지는 반복 하중 하에서 전기적-pullout 시험법을 이용하여 수행하였다. 같은 부피 함량에서 섬유파단, 기지재료 변형 및 응력에 대한 감지능은 탄소 나노튜브/에폭시 복합재료에서 가장 높았으며, 카본블랙의 경우가 가장 낮았다. 전기적물성 및 손상 감지능은 탄소나노복합재료의 형상학적인 관찰 결과와 상호 비교하였다. 본 연구에서 탄소 나노재료의 균일한 분산은 손상 감지능을 높이기 위한 가장 중요한 요인으로 고려되며, 탄소 나노복합재료에 대한 손상감지는 전기저항측정과 음향 방출을 이용하여 비파괴적으로 평가할 수 있었다.

Supercapacitor performances of carbon nanotube composite carbon fibers from electrospinning

  • Yang, Kap-Seung;Kim, Chan;Lee, Wan-Jin
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 The Korea-Japan Joint Symposium
    • /
    • pp.69-70
    • /
    • 2003
  • 10 wt.% of PAN was dissolved in N,N-dimethylformamide (DMF) and 1 wt. % of the multi wall carbon nanotubes (MWCNTs) was evenly dispersed in PAN solution by using ultrasonic miner. The 1 wt.% addition of MWCNT increased the specific capacitance by two times more from 82 to 160 F/g. The specific capacitance of carbon nanofiber(CNF)/carbon nanotube(CNT) composite capacitors was about 90 F/g at the current density of 500 mA/g. This value is even larger than the capacitance from the CNF electrode at the current density of 5 mA. The relatively high capacitance at the high current density is a practical importance for applications to supercapacitor in motor vehicle.

  • PDF

Patch-type large strain sensor using elastomeric composite filled with carbon nanofibers

  • Yasuoka, Tetsuo;Shimamura, Yoshinobu;Todoroki, Akira
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권2호
    • /
    • pp.146-151
    • /
    • 2013
  • Carbon nanofibers (CNFs) are electrically conductive. When CNFs are used as fillers in resin, this electrical conductivity can be yielded without adversely affecting the mechanical properties of the resin. When an elastomer is adopted as the resin, a conductive elastomer can then be produced. Due to its flexibility and conductive properties, a large strain sensor based on changes in resistivity may be produced, for strain sensing in flexible structures. In this study, a patch-type large strain sensor using resistivity change in a CNF/elastomer composite was proposed. The measurement limits of the sensor were investigated experimentally, and the limit was found to be 40%, which greatly exceeded the limits of conventional metal-foiled strain gages. Also, the proposed CNF/elastomer large strain sensor can be used to measure flexible materials, while conventional strain gages cannot be used to measure such strains.