• 제목/요약/키워드: Carbon nanofiber

검색결과 150건 처리시간 0.037초

Preparation and Characterization of PAN-based Web of Carbon Nanofibers by Electrostatic Spinning

  • Kim, Chan;Yang, Kap-Seung
    • Carbon letters
    • /
    • 제3권4호
    • /
    • pp.210-218
    • /
    • 2002
  • Electrostatic spinnings were performed with the solutions of PAN/DMF to be nanofiber webs. The diameter of the fibers ranged from 200 nm to 1000 nm depending on the PAN concentration and on the applied DC voltage. The nanofibers were oxidatively stabilized and subsequently carbonized up to $1000^{\circ}C$ with carbonization yield of 40%. The bulk electric conductivity of the carbonized web increased form $6.8{\times}10^{-3}S/cm$ to 1.96 S/cm while the carbonizaton temperature increased from $700^{\circ}C$ to $1000^{\circ}C$.

  • PDF

슈퍼 커패시터를 위한 WS2-W-WC가 내장된 탄소나노섬유 복합체의 제조 (Fabrication of WS2-W-WC Embedded Carbon Nanofiber Composites for Supercapacitors)

  • 이유진;안효진
    • 한국분말재료학회지
    • /
    • 제22권2호
    • /
    • pp.116-121
    • /
    • 2015
  • $WS_2$-W-WC embedded carbon nanofiber composites were fabricated by using electrospinning method for use in high-performance supercapacitors. In order to obtain optimum electrochemical properties for supercapacitors, $WS_2$ nanoparticles were used as precursors and the amounts of $WS_2$ precursors were controlled to 4 wt% (sample A) and 8 wt% (sample B). The morphological, structural, and chemical properties of all samples were investigated by means of field emission photoelectron spectroscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. These results demonstrated that the embedded phases of samples A and B were changed from $WS_2$ to $WS_2$-W-WC through carbothermal reaction during carbonization process. In particular, sample B presented high specific capacitance (~119.7 F/g at 5 mV/s), good high-rate capacitance (~60.5%), and superb cycleability. The enhanced electrochemical properties of sample B were explained by the synergistic effect of the using 1-D structure supports, increase of specific surface area, and improved conductivity from formation of W and WC phases.

Parametric study on synthesis of carbon nanotubes by the vertical spray pyrolysis method

  • Park, Young-Soo;Huh, Mong-Young;Kang, Sin-Jae;Lee, Seung-Hee;An, Kay-Hyeok
    • Carbon letters
    • /
    • 제12권2호
    • /
    • pp.102-106
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been synthesized by ferrocene-catalyzed pyrolysis of toluene. The influences of the experimental conditions on the morphology and microstructure of the product have been analyzed. To find the proper temperature for synthesis of CNTs, the experiment was performed in a temperature range from 800 to $1100^{\circ}C$. From content variation of ferrocene and thiophene as the catalyst, morphological change of carbon nanotubes has been observed. Also, the influence of the gas ratio of hydrogen and argon on the nanotube samples was analyzed by scanning electron microscopy and transmission electron microscopy.

Effects of carbonization temperature on pore development in polyacrylonitrile-based activated carbon nanofibers

  • Lee, Hye-Min;An, Kay-Hyeok;Kim, Byung-Joo
    • Carbon letters
    • /
    • 제15권2호
    • /
    • pp.146-150
    • /
    • 2014
  • In this work, activated carbon nanofiber (ACNF) electrodes with high double-layer capacitance and good rate capability were prepared from polyacrylonitrile nanofibers by optimizing the carbonization temperature prior to $H_2O$ activation. The morphology of the ACNFs was observed by scanning electron microscopy. The elemental composition was determined by analysis of X-ray photoelectron spectroscopy. $N_2$-adsorption-isotherm characteristics at 77 K were confirmed by Brunauer-Emmett-Teller and Dubinin-Radushkevich equations. ACNFs processed at different carbonization temperatures were applied as electrodes for electrical double-layer capacitors. The experimental results showed that the surface morphology of the CNFs was not significantly changed after the carbonization process, although their diameters gradually decreased with increasing carbonization temperature. It was found that the carbon content in the CNFs could easily be tailored by controlling the carbonization temperature. The specific capacitance of the prepared ACNFs was enhanced by increasing the carbonization temperature.

Carbon-Nanofiber Reinforced Cu Composites Prepared by Powder Metallurgy

  • Weidmueller, H.;Weissgaerber, T.;Hutsch, T.;Huenert, R.;Schmitt, T.;Mauthner, K.;Schulz-Harder, S.
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.321-326
    • /
    • 2006
  • Electronic packaging involves interconnecting, powering, protecting, and cooling of semiconductor circuits fur the use in a variety of microelectronic applications. For microelectronic circuits, the main type of failure is thermal fatigue, owing to the different thermal expansion coefficients of semiconductor chips and packaging materials. Therefore, the search for matched coefficients of thermal expansion (CTE) of packaging materials in combination with a high thermal conductivity is the main task for developments of heat sink materials electronics, and good mechanical properties are also required. The aim of this work is to develop copper matrix composites reinforced with carbon nanofibers. The advantages of carbon nanofibers, especially the good thermal conductivity, are utlized to obtain a composite material having a thermal conductivity higher than 400 W/mK. The main challenge is to obtain a homogeneous dispersion of carbon nanofibers in copper. In this paper, a technology for obtaining a homogeneous mixture of copper and nanofibers will be presented and the microstructure and properties of consolidated samples will be discussed. In order to improve the bonding strength between copper and nanofibers, different alloying elements were added. The microstructure and the properties will be presented and the influence of interface modification will be discussed.

탄소나노섬유를 열원으로 적용한 세탁물 건조기의 개발 (Development of the Dryer with a Heat Source of Carbon Nanofibers)

  • 이정환;원상연
    • 한국산업정보학회논문지
    • /
    • 제23권3호
    • /
    • pp.25-34
    • /
    • 2018
  • 본 논문은 세탁물 건조기의 고효율과 건조성능 향상을 위한 탄소나노섬유의 열원(히팅모듈)을 설명하였고, 이 열원의 적용 가능성을 평가하는데 집중하였다. 제안된 히팅모듈의 설계를 위해, 탄소나노섬유램프의 표면온도와 표면온도분포특성에 관한 실험이 수행되었다. 그 램프의 표면온도는 램프에 흐르는 전류의 증가와 함께 선형적으로 증가하였고, 그 램프의 길이가 짧을수록 증가하는 패턴을 보였다. 제안된 히팅모듈은 건조효율, 세탁물의 수분증발률, 건조동작 중 드럼의 내부온도를 기반으로 평가되었다. 건조효율은 KS C 9319의 기준인 45%를 충족하였고, 수분증발률과 드럼의 내부온도는 각각 98.88%와 평균 $61.1^{\circ}C$로 S사의 제품과 대등한 건조성능을 보였다. 그 평가와 실제 건조실험 결과로부터, 제안된 탄소나노섬유램프 히팅모듈은 건조효율과 건조성능의 측면에서 세탁물 건조기의 열원으로 적용 가능할 것으로 판단되며, 높은 온도의 열원, 우수한 발열량, 원적외선 방출에 의한 건조성능의 향상과 세탁물의 살균효과를 얻을 수 있다. 추가적으로, 그 건조기들 사이에 건조효율 성능차이가 열원의 소비전력을 기반으로 상세히 분석되었다.

폴리비닐리덴 풀루오라이드로부터 제조된 다공성 탄소나노섬유 (Poly(vinylidene fluoride)-based Porous Carbon Nanofibers)

  • 정혜진;조성무;김동영;진병두;이도원
    • 한국수소및신에너지학회논문집
    • /
    • 제16권4호
    • /
    • pp.334-342
    • /
    • 2005
  • 200-300 nm 직경을 지닌 폴리비닐리덴 플루오라이드 초극세 섬유를 전기방사법으로 제조하였다. 이들을 불응화시킨 후, $800-1800^{\circ}C$ 온도에서 탄화시켜 PVdF 계 탄소나노 섬유를 제조하여 구조 및 기공분석을 하였다. 이들은 20-30 nm 크기의 탄소입자로 이루어져 있으며 탄소나노입자는 1 nm이하의 슬릿형 나노기공을 지니고 있었다. 탄화온도가 증가함에 따라 비표면적은 $1500^{\circ}C$에서 $414\;m^2/g$로 감소하였으나, $1800^{\circ}C$에서는 $1300\;m^2/g$로 급격히 다시 증가하였으며 1 nm 이하의 나노기공만을 지닌 탄소섬유가 얻어졌다. 비표면적 및 기공특성과 수소저장특성을 관계를 조사하기 위하여 Magnetic Syspension Balance(MSB)를 사용한 중량법으로 평가한 이들의 수소저장능은 0.04-0.4wt%이었다.