• Title/Summary/Keyword: Carbon nanoball

Search Result 4, Processing Time 0.022 seconds

Carbon Nanotube Growth on Invar Alloy using Coal Tar Pitch (콜타르피치를 이용한 Invar 합금 위 탄소나노튜브의 합성)

  • Kim, Joon-Woo;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.516-522
    • /
    • 2017
  • We report the growth of carbon nanotubes (CNT) on Invar-42 plates using coal tar pitch (CTP) by chemical vapor deposition (CVD) method. The solid phase CTP is used as an inexpensive carbon source since it produces a bunch of hydrocarbon gases such as $CH_4$ and other $C_xH_v$ by thermal decomposition over $450^{\circ}C$. The Invar-42 is a representative Ni-based ferrous alloy and can be used repetitively as a substrate for CNT growth because Ni and Fe are used as very active catalytic elements. We changed mixing ratio of carrier gases, argon and hydrogen, and temperature of growth region. It was found that the optimum gas ratio and temperature for high quality CNT growth are $Ar:H_2=400:400$ sccm and $1000^{\circ}C$, respectively. In addition, the carbon nanoball (CNB) was also obtained by just changing the mixing ratio to $Ar:H_2=100:600$ sccm. Finally, CTP can be employed as a versatile carbon source to produce various carbon-based nanomaterials, such as CNT and CNB.

Heat resistance of carbon nanoonions by molecular dynamics simulation

  • Wang, Xianqiao;Lee, James D.
    • Interaction and multiscale mechanics
    • /
    • v.4 no.4
    • /
    • pp.247-255
    • /
    • 2011
  • Understanding the structural stability of carbon nanostructure under heat treatment is critical for tailoring the thermal properties of carbon-based material at small length scales. We investigate the heat resistance of the single carbon nanoball ($C_{60}$) and carbon nanoonions ($C_{20}@C_{80}$, $C_{20}@C_{80}@C_{180}$, $C_{20}@C_{80}@C_{180}C_{320}$) by performing molecular dynamics simulations. An empirical many-body potential function, Tersoff potential, for carbon is employed to calculate the interaction force among carbon atoms. Simulation results shows that carbon nanoonions are less resistive against heat treatment than single carbon nanoballs. Single carbon nanoballs such $C_{60}$ can resist heat treatment up to 5600 K, however, carbon nanoonions break down after 5100 K. This intriguing result offers insights into understanding the thermal-mechanical coupling phenomena of nanodevices and the complex process of fullerenes' formation.

Synthesis of Zirconium Oxide Nanoballs Using Colloid-Imprinted Carbon and Their Electrical Properties

  • Kim, Chy Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.86-89
    • /
    • 2015
  • Uniform ZrO2 nanoballs were synthesized at 700℃ using the inverse replication method through a colloid-imprinted carbon (CIC) template. The structural, dielectric, and conducting properties of the ZrO2 nanoballs were investigated and compared with those of ZrO2 film prepared by sol-gel method and powdered ZrO2 chemical. Both the monoclinic and cubic phases were found in the ZrO2 balls and film but the ZrO2 chemical showed a monoclinic phase, where the cubic structure is known to be formed at above 2,300℃. ZrO2 nanoballs showed the lower dielectric property of k = 21.2 at 1 MHz because the 8-coordinated cubic phase in the ZrO2 nanoball produced lower polarization than the polarization of the 7-coordinated monoclinic ZrO2 chemical (k = 23.6). The dielectric stability was maintained in each ZrO2 ball, film, and chemical under the applied forward and reverse voltage range (−5 to +5 V) at 1 MHz. The ionic conductivities were 7.86 × 10−8/Ω·cm for ZrO2 nanoballs, 3.29 × 10−8/Ω·cm for ZrO2 chemical, and 6.70 × 10−5/Ω·cm for the thickness of 1,053 nm ZrO2 film at room temperature with the electronic contribution being less than 0.006%.