• Title/Summary/Keyword: Carbon ion

Search Result 1,261, Processing Time 0.025 seconds

Enhanced Removal Efficiency of Zinc and Iron Ions Using By-Product of Achyanthes Japonica Stem (우슬 줄기 부산물을 이용한 아연과 철 이온의 제거효율 향상)

  • Choi, Suk Soon;Choi, Tay Ryeong;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.90-95
    • /
    • 2022
  • In the present work, biochar was prepared using Achyanthes japonica stem as a by-product of herbal medicine. In order to apply the prepared biochar to water treatment process, the adsorption characteristics of zinc and iron ions dissolved in water were investigated. When the experiments were performed for 2 h to remove 70 and 100 mg/L of zinc ions, the adsorption amounts of 32.3 and 31.0 mg/g were obtained, respectively. It was also found that the adsorption amount of Achyanthes japonica stem biochar for the removal process of zinc ion was three times higher than that of the activated carbon. In addition, when the experiments were performed for 2 h to treat 70 and 100 mg/L of iron ions, high adsorption amounts of 50.1 and 54.3 mg/g were achieved, respectively. In order to further enhance the removal efficiency of zinc and iron ions, a steam activation process was performed on the biochar of Achyanthes japonica stem. As a result, the removal efficiencies of 70 and 100 mg/L of zinc ions increased to 80 and 60%, respectively. Also, the removal efficiencies of 70 and 100 mg/L of iron ions were improved to 100 and 82%, respectively. In addition, when the biochar of Achyanthes japonica stem with a steam activation was compared with the untreated biochar of Achyanthes japonica stem, the specific surface area increased 37.3 times, and the total and macroporpous pore volumes were improved by 28.4 and 136 times, respectively. Therefore, the results can be used for economically and practically adsorbing zinc and iron ions contained in water.

Strength and Carbonation Characteristics in OPC Concrete under Long-Term Exposure Conditions in Various Sea Environments (다양한 해양환경에 장기 노출된 OPC 콘크리트의 강도 및 탄산화 특성 )

  • Hyeon-Woo Lee;Geum-Chae Shin;Seung-Jun Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.53-60
    • /
    • 2024
  • Compressive strength in concrete has many affecting parameters and varies with exposure conditions. Although the concrete has same mix proportions, its properties are different with exposure conditions, and sea-environment can be classified into three groups such as tidal, atmospheric, and sea submerged region particularly. In this study, compressive strength was evaluated on 7-year-cured concrete and the results from previous equations (KDS, ACI, CEB, and JSCE) were compared with them. Furthermore the strength and carbonation progress were evaluated on concrete cured for 7 years exposed to three different sea environment. Three levels of w/c (water to cement) ratio (0.37, 0.42, and 0.47) and three different exposure conditions (tidal, atmospheric, and submerged) were considered. The results from wet-cured condition are all higher than those from the previously proposed equations, and the results from different sea exposure conditions (tidal, atmospheric, and submerged region) were lower than those from wet-cured condition. A reduction of strength was evaluated with increasing w/c ratio and the minimum strength was evaluated in the sea-submerged conditions. Several experimental constants applicable to the previous equations were obtained from regression analysis since the strength change with w/c ratios were not considered in those equations. Regarding carbonation depth with different exposure conditions, higher carbonation depth clearly was observed with increasing w/c ratios, and evaluated in the order of atmospheric, submerged, and tidal region. Considerable carbonation depth was observed in submerged and tidal region due to sulfate ion and dissloved carbon dioxide as well.

Study of Conversion of Waste LFP Battery into Soluble Lithium through Heat Treatment and Mechanochemical Treatment (열처리 및 기계화학적 처리를 통한 폐LFP 배터리로부터 가용성 리튬으로의 전환 연구)

  • Boram Kim;Hee-Seon Kim;Dae-Weon Kim
    • Resources Recycling
    • /
    • v.33 no.3
    • /
    • pp.21-29
    • /
    • 2024
  • Globally, the demand for electric vehicles (EVs) is surging due to carbon-neutral strategies aimed at decarbonization. Consequently, the demand for lithium-ion batteries, which are essential components of EVs, is also rising, leading to an increase in the generation of spent batteries. This has prompted research into the recycling of spent batteries to recover valuable metals. In this study, we aimed to selectively leach and recover lithium from the cathode material of spent LFP batteries. To enhance the reaction surface area and reactivity, the binder in the cathode material powder was removed, and the material was subjected to heat treatment in both atmospheric and nitrogen environments across various temperature ranges. This was followed by a mechanochemical process for aqueous leaching. Initially, after heat treatment, the powder was converted into a soluble lithium compound using sodium persulfate (Na2S2O8) in a mechanochemical reaction. Subsequently, aqueous leaching was performed using distilled water. This study confirmed the changes in the characteristics of the cathode material powder due to heat treatment. The final heat treatment in a nitrogen atmosphere resulted in a lithium leaching efficiency of approximately 100% across all temperature ranges.

Study on Selective Lithium Leaching Effect on Roasting Conditions of the Waste Electric Vehicle Cell Powder (폐전기차 셀분말의 열처리 조건에 따른 선택적 리튬침출 연구)

  • Jung, Yeon Jae;Son, Seong Ho;Park, Sung Cheol;Kim, Yong Hwan;Yoo, Bong Young;Lee, Man Seung
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.79-86
    • /
    • 2019
  • Recently, the use of lithium ion battery(LIB) has increased. As a result, the price of lithium and the amount spent lithium on ion battery has increased. For this reason, research on recycling lithium in waste LIBs has been conducted1). In this study, the effect of roasting for the selective lithium leaching from the spent LIBs is studied. Chemical transformation is required for selective lithium leaching in NCM LiNixCoyMnzO2) of the spent LIBs. The carbon in the waste EV cell powder reacts with the oxygen of the oxide at high temperature. After roasting at 550 ~ 850 ℃ in the Air/N2 atmosphere, the chemical transformation is analysed by XRD. The heat treated powders are leached at a ratio of 1:10 in D.I water for ICP analysis. As a result of XRD analysis, Li2CO3 peak is observed at 700 ℃. After the heat treatment at 850 ℃, a peak of Li2O was confirmed because Li2CO3 is decomposed into Li2O and CO2 over 723 ℃. The produced Li2O reacted with Al at high temperature to form LiAlO2, which does not leach in D.I water, leading to a decrease in lithium leaching ratio. As a result of lithium leaching in water after heat treatment, lithium leaching ratio was the highest after heat treatment at 700 ℃. After the solid-liquid separation, over 45 % of lithium leaching was confirmed by ICP analysis. After evaporation of the leached solution, peak of Li2CO3 was detected by XRD.

Dosimetric effects of couch attenuation and air gaps on prone breast radiation therapy (Prone Breast Phantom을 이용한 couch 산란영향 평가)

  • Kim, Min Seok;Jeon, Soo Dong;Bae, Sun Myeong;Baek, Geum Mun;Song, Heung Gwon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.43-51
    • /
    • 2017
  • Purpose: The purpose of this study is to evaluate the dosimetric effects of couch attenuation and air gaps using 3D phantom for prone breast radiation therapy. Materials and method: A 3D printer(Builder Extreme 1000) and computed tomography (CT) images of a breast cancer patient were used to manufacture the customized breast phantom. Eclipse External Beam Planning 13.6 (Varian Medical Systems Palo Alto, CA, USA) was used to create the treatment plan with a dose of 200 cGy per fraction with 6 MV energy. The Optically Stimulated Luminescence Detector(OSLD) was used to measure the skin dose at four points (Med 1, Med 2, Lat 1, Lat 2) on the 3D phantom and ion-chamber (FC65-G) were used to perform the in-vivo dosimetry at the two points (Anterior, Posterior). The Skin dose and in-vivo dosimetry were measured with reference air gap (3 cm) and increased air gaps (1, 2, 3, 4, 5, 6 cm) from reference distance between the couch and 3D phantom. Results: As a result, measurement for the skin dose at lateral point showed a similar value within ${\pm}4%$ compared to the plan. While the air gap increased, skin dose at medial 1 was reduced. And it was also reduced over 7 % when the air gap was more than 3 cm compared to radiation therapy plan. At medial 2 it was reduced over 4 % as well. The changes of dose from variety of the air gap showed similar value within ${\pm}1%$ at posterior. As the air gap was increased, the dose at anterior was also increased and it was increased by 1 % from the air gap distance more than 3 cm. Conclusion: Dosimetrical measurement using 3D phantom is very useful to evaluate the dosimetric effects of couch attenuation and air gaps for prone breast radiation therapy. And it is possible to reduce the skin dose and increase the accuracy of the radiation dose delivery by appling the optimized air gap.

  • PDF

Simultaneous Separation and Determination of $^{l4}C\;and\;^3H$ in Spent Resins from PWR Nuclear Power Plants (가압경수로형 원전에서 발생된 폐수지의 $^{14}C$$^3H$ 동시 분리 및 측정)

  • Park, Soon-Dal;Kim, Jung-Suck;Kim, Jong-Goo;Han, Sun-Ho;Jee, Kwang-Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.5 no.3
    • /
    • pp.179-188
    • /
    • 2007
  • In this work $^{14}C\;and\;^3H$ distribution characteristics of spent resins from nuclear power plants(NPPs), pressurized water reactors(PWRs), was investigated. It was found that the recovery percent of $^{14}C$ by the wet oxidation-acid stripping was $81%{\sim}100%$ for the added activity range of $^{14}C,\;0.72\;Bq{\sim}460\;Bq$, and it was not affected by the kinds of stripping acids, 3N-HCl, $3\;N-HNO_3\;and\;3\;N-H_2SO_4$. And the recovery percent of $^3H$ by distillation using the same apparatus was $81%{\sim}101%$ for the added activity range of $^3H,\;0.60\;Bq{\sim}435\;Bq$. Among the tested stripping acids, 3\;N-HCl, $3\;N-HNO_3\;and\;3\;N-H_2SO_4$, only the trapped $^3H$ solution by distillation in $3\;N-H_2SO_4$ was compatible with the 3H scintillator, Ultimagold XR. Neither of the $^{14}C\;and\;^3H$ trapping solutions from the spent ion exchange resin samples by the wet oxidation-3 $N-H_2SO_4$ stripping contained gamma nuclides. However, some gamma nuclides, $^{60}Co,\;^{134}Cs,\;^{137}Cs\;and\;^{54}Mn$, were found in the trapped $^3H$ solutions of the spent resins by the wet oxidation-3 N-HCl stripping. It was the same for the $^3H$ trapping solutions of the spent resins by Sample Oxidizer(PACKARD MODEL 307). Meanwhile only two nuclides, $^{134}Cs,\;and\;^{134}Cs$, were found in the $^{14}C$ trapping solutions of the spent resins by Sample Oxidizer(PACKARD MODEL 307). It was found that most of the $^{14}C$ in the spent resins existed as inorganic carbon form, more than about 70% of the total $^{14}C$ content. Among the analyzed 30 spent ion exchange resin samples, the average concentration of $^{14}C$ and $^3C$ for the high radioactive samples, 8 samples, was $19000\;Bq/g{\pm}41000\;Bq/g,\;670\;Bq/g{\pm}460\;Bq/g$ and that for the low radioactive samples, 22 samples, was $4.2\;Bq/g{\pm}4.3\;Bq/g,\;6.0\;Bq/g{\pm}5.3\;Bq/g$, respectively. And the average $^{14}C/^3H$ ratio for the high radioactive samples, was higher, 28, than that of low radioactive samples, 0.70. Some linear relationship trend was found between the activity concentrations of $^{14}C\;and\;^3H$.

  • PDF

NMR Spectroscopy and Mass Spectrometry of Phenylethanol Galactoside synthesized using Escherichia coli 𝛽-Galactosidase (대장균 베타-갈락토시데이즈를 이용하여 합성된 Phenylethanol Galactoside의 NMR Spectroscopy 및 Mass spectrometry)

  • Lee, Hyang-Yeol;Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.1323-1329
    • /
    • 2020
  • To characterize the molecular structure of PhE-gal synthesized using Escherichia coli 𝛽-gal, NMR (1H- and 13C-) spectroscopy and mass spectrometry of PhE-gal were conducted. 1H NMR spectrum of PhE-gal showed multiple peaks corresponding to the galactosyl group, which is an evidence of galactosylation on 2-phenylethanol (PhE). Downfield proton peaks at 𝛿H 7.30~7.21 ppm showed the presence of aromatic protons of PhE as well as benzyl CH2 protons at 𝛿H 2.88 ppm. Up field proton peaks at 𝛿H 4.31 ppm, 4.07 ppm and multiple peaks from 𝛿H 3.86~3.38 ppm are indicative of galactocylation on PhE. 13C NMR spectrum revealed the presence of 12 carbons suggestive of PhE-gal. Among 12 carbon peaks from PhE-gal, the four peaks at 138.7, 129.0, 128.6 and 126.5 were assigned aromatic carbons in the phenyl ring. Three peaks at 129.0, 128.6 and 126.5 showed high intensities, indicating CH aromatic carbons. 13C NMR data of PhE-gal showed 6 monosaccharide peaks from galactose and 2 peaks from aliphatic chain of PhE, indicating that PhE-gal was galactosyl PhE. The mass value (sodium adduct ion of PhE-gal, m/z = 307.1181) from mass spectrometry analysis of PhE-gal, and 1H and 13C NMR spectral data were in good agreement with the expecting structure of PhE-gal. We are expecting that through future study it will eventually be able to develop a new additive with low cytotoxicity.

Characteristic Properties of Fucoidan Sulfate Purified from Gompi, Ecklonia stolonifera (곰피에서 정제한 Fucoidan Sulfate의 특성)

  • Lee, Hong-Soo;Jin, Sung-Hyun;Kim, Hee-Sook;Ryu, Byung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.716-723
    • /
    • 1995
  • The fucoidan purified from Korean brown seaweed, Ecklonia stolonifera was characterized on molecular structure and blood anticoagulant activities. Extraction was conducted at $100^{\circ}C$ with water and repeated twice. The crude fucodian was 151.1g out of 20.0 kg of Ecklonia stolonifera. The Fucoidan-1, which was purified from crude fucoidan using calcium chloride and cetyl pyridium chloride (CPC), was 35.2% against crude fucoidan. Fucoidan-5 was obtained approximately 28.1% from Fucoidan-1 through DEAE-Toyopearl 650 M ion-exchange column chromatography and showed one band by cellulose acetate electrophoresis. The molecular weight of Fucoidan-5 was estimated to be about 21,000∼23,000 dalton by Sephacryl S-300 gel filtration chromatography. Fucoidan-5 consists of 35.7% of fucose and 4.3% of galactose and the molar ratio of fucose and sulfate was about one to one. IR spectrum of Fucoidan-5 showed absorption at $1240\;cm^{-1}\;and\;850\;cm^{-1}$ and specific rotation value, $[\alpha]$, was $[\alpha]$. These results suggests that the sulfate maybe bind at $C_{4}$ carbon on ${\alpha}-L-fucose$. Gas chromatograph of methyl alditol acetate revealed that Fucoidan-5 is a fucose containing sulfated polysaccharide with $({\alpha}l-2)\;or\;({\alpha}l-2)$ glycosidic linkage. Anti-thrombin activity of the Fucoidan-5 was estimated as 1.4 time stronger than heparin. From above results, the purification methods using CPC and ion exchange chromatography is effective tools for obtaining highly purified fucoidan from Gompi, Ecklonia stolonifera.

  • PDF

Confirmation of Enzymatic Synthesis of 1, 2-Octanediol Galactoside using Mass Spectrometry and NMR Spectroscopy (Mass spectrometry와 NMR Spectroscopy를 이용한 1, 2-Octanediol Galactoside의 효소합성 확인)

  • Lee, Hyang-Yeol;Jin, Hong-Jong;An, Seung Hye;Lee, Hye Won;Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.824-831
    • /
    • 2021
  • 1, 2-Octanediol galactoside (OD-gal) has been synthesized from 1, 2-octanediol (OD), as a safer cosmetic preservative, using recombinant Escherichia coli β-galactosidase (β-gal). To confirm the molecular structure of synthesized OD-gal, mass spectrometry and NMR (1H- and 13C-) spectroscopy of OD-gal were carried out. In the reaction mixture, a sodium adduct ion of OD-gal (m/z=331.1732) was identified using mass spectrometry analysis. In addition, 1H NMR spectrum of OD-gal showed multiple peaks corresponding to the galactosyl group, which is evidence of galactosylation on OD. Downfield proton peaks at δH 4.39 ppm and multiple peaks from δH 3.98~3.55 ppm were indicative of galactosylation on OD. Up field proton peaks at δH 1.52~1.26 ppm and 0.89 ppm showed the presence of CH2 and CH3 protons of OD. 13C NMR spectrum revealed the presence of 24 carbons suggestive of α- and β-anomers of OD-gal. Among 14 carbon peaks from each anomer, the 4 peaks at δC 31.4, 29.0, 22.3, and 13.7 ppm were assigned to be overlapped showing only 24 peaks out of a total of 28 peaks. The mass value from mass spectrometry analysis of OD-gal, and 1H and 13C NMR spectral data were in good agreement with the expecting structure of OD-gal. Finally, we identified a galactose molecule from the hydrolysate of OD-gal using β-gal. We are expecting that through future study it will eventually be able to develop a safe cosmetic preservative.

The Removal of Organics and Nitrogen with Step Feed Ratio Change into the Anoxic and Anaerobic reactor in Advanced Sewage Treatment process Using Nonsurface-modified and Surface-modified Media Biofilm (비개질/개질 생물막을 이용한 오수고도처리공정에서 혐기조와 무산소조의 원수 분배율에 따른 유기물 및 질소 제거)

  • Seon, Yong-Ho
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.253-259
    • /
    • 2005
  • This study was accomplished using attached $A^2/O$ process that contains nonsurface-modified and surface-modified polyethylene media inside the Anaerobic/Anoxic, Oxic tank, respectively. We could make the hydrophobic polyethylene media have hydrophilic characteristics by radiating ion beam on the surface of the media. The objectives of this study is to investigate the removal efficiencies of the organics and nitrogen when the step feed ratio of raw wastewater into anaerobic and anoxic tank is changed. In this case, we assumed that the denitrification rate can be improved because the nitrifiers in anoxic tank can perform denitrification using RBDCOD instead of artificial carbon sources (for example, methanol, etc.). The wastewater injection rate into anaerobic/anoxic tank was set up by the ratio of 10 : 0, 9 : 1, 8 : 2, 6 : 4, and the results of BOD removal efficiency showed similar trends with $93.3\%,\;92.6\%,\;92.4\%\;and\;91.6\%$, respectively. But the BOD removal efficiency (utilization of the organics) in the anoxic tank was in the order of 9 : 1 $(84.8\%)$, 10 : 0 $(77.0\%)$, 8 : 2 $(75.3\%)$, and 6 : 4 $(61.1\%)$. The T-N removal efficiency was most high when the ratio is 9 : 1 $(67.4\%)$, and other conditions, 10 : 0, 8 : 2, 6 : 4, showed $61.3(\%),\;60.7\%,\;55.5\%$, respectively; the ratio 6 : 4 was found to be lowest T-N removal efficiency, lower than the ratio 9 : 1 by $12\%$. Though the nitrification rate of the ratio 10 : 0, 9 : 1, and 8 : 2 showed similar levels, the ratio 6 : 4 showed considerable inhibition of nitrification, ammonia was the great portion of the effluent T-N. The advantages of this process is that this process is cost-saving, and non-toxic methods than injecting the artificial carbon source.