• Title/Summary/Keyword: Carbon film

Search Result 1,327, Processing Time 0.028 seconds

Dissolution Characteristics of Liquid Carbon Dioxide Injected at the Intermediate Depth of the Ocean

  • Namjin Kim, Jaeyong-Lee;Byungki Hur;Taebeom Seo;Kim, Chongbo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1276-1285
    • /
    • 2000
  • The solubility, the surface concentration and the dissolution behavior of carbon dioxide in deep sea were numerically investigated. Base on the calculations the relations between the surface concentration of liquid carbon dioxide droplet with the hydrate film and the solubility and those between the ambient carbon dioxide concentration in the plume and the dissolution rate were obtained. The result show that a carbon dioxide droplet is released both at 1000 m in depth with the initial droplet diameter of 0.011 m or less and at 1500 m in depth with a diameter of 0.015 m or less, and the droplet is completely dissolved below 500 m in depth. The hydrate film acts as a resistant layer for the dissolution of liquid carbon dioxide, and the effect of the hydrate film on the dissolution of liquid carbon dioxide depended upon the depth.

  • PDF

Fabrication of Carbon Thin Film by Electrochemical Method (전기화학 Carbon Film 합성)

  • Lee, Sang-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.128-129
    • /
    • 2007
  • Electrochemical method of carbon film on silicon substrate in methanol solution was carried out with various current density, solution temperature and electrode spacing between anode and cathode. The carbon films with smooth surface morphology and high electrical resistance were formed when the distance between electrode was relatively wider. The electrical resistance of the carbon films were independent of both current density and solution temperature.

  • PDF

The Growth of Diamond-Like-Carbon (DLC) Film by PECVD and the Characterization (PECVD에 의한 DLC 박막의 성장과 그 특성 조사)

  • 조재원;김태환;김대욱;최성수
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.248-254
    • /
    • 1998
  • DLC(Diamond-Like-Carbon) thin film, one of the solid state amorphous carbon films, has been deposited by the method of PECVD (Plasma Enhanced Chemical Vapor Deposition). The structural features have been characterized using both FT-IR Spectroscopy and Raman Scattering. The film is considered to consist of microcrystalline diamond domains and graphitelike carbon domains, which are interconnected by hydrogenated $sp^3$ tetrahedral carbons. This shows a good agreement with the results by I-Vmeasurements. In I-Vstudy, the sudden increase of current has been observed and this phenomenon is understood to be due to the tunneling effect between graphitelike domains. A characteristic feature related to the $\beta$-SiC has been identified in the study of Raman Scattering for the very thin film, which suggests that a buffer layer forms at the interface of the Si substrate and the carbon film.

  • PDF

A STUDY ON THE RESISTANCE OF WEAR AND CYTOTOXICITY OF THE TITANIUM SURFACE AFTER FILM DEPOSITIONS (박막증착시 티타늄 표면의 마손저항도와 세포독성에 관한 연구)

  • Kim Hyung-Woo;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.1
    • /
    • pp.84-95
    • /
    • 2001
  • Titanium is widely used in dentistry for its low density, high strength, fatigue resistance, corrosion resistance, and biocompatibility. But it has a tendency of surface damage under circumstance of friction and impact for its low hardness of the surface. Coating is one of methods fir increasing surface hardness. Its effect is to improve surface physical characteristics without change of titanium. Diamond-like carbon and titanium nitride are known for its high hardness of the surface. So that this study was aimed at the wear test and the cytotoxicity test of the commercially pure titanium and Ti-6Al-4V alloy which were deposited by diamond-like carbon film or titanium nitride film to acertain improvement of the surface hardness and the biocompatibility. A disk (25mm diameter, 2mm thickness) was made of commercially pure titanium and Ti-6Al-4V alloy and these substrates were deposited by diamond-like carbon film or titanium nitride film. Diamond-like carbon film was deposited by the method of radiofrequency plasma assisted chemical vapor deposition and titanium nitride film was deposited by the method of reactive arc ion plating. Then these substrates were tested about wear characteristics by the pin-on-disk type wear tester in which ruby ball was used as a wear causer under the load of 32N, The fracture cycles were measured by rotating the substrates until their films were fractured. The wear volume was measured after 150 cycles and 3,000 cycles using surface profiler. The cytotoxicity test was peformed by the method of the MTT assay. The results were as follows : 1. In the results of the wear volume test, commercially pure titanium and titanium alloy which were coated by diamond-like carbon film or titanium nitride aim had higher resistance against wear than the substrates which were not coated by any films (P<0.05). 2. In the results of the fracture cycle test and the wear volume test, diamond-like carbon film had higher resistance against wear than titanium nitride film (P<0.05). 3. In both coatings of diamond-like carbon aim and titanium nitride film, Ti-6Al-4V alloy had higher resistance against wear than commercially pure titanium (P<0.05) 4. In the results of the cytotoxicity test, diamond-like carbon film and titanium nitride film had little cytotoxicity as like commercially pure titanium or Ti-6Al-4V alloy (P>0.05).

  • PDF

Atomic structure of amorphous carbon deposited by various incidence angles -MD simulation study

  • Jo, Min-Ung;Lee, Gwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.52-52
    • /
    • 2010
  • Amorphous carbon films have a variety of potential applications. In most such applications film properties are crucial and highly dependent on the film growth conditions. We here investigate the atomic structure of the films, which is generated at various incidence angles, using the classical molecular dynamics. Varying incidence angle of the deposited carbon atoms, different level of sp hybridization and porosity of the film are captured in our model. As the incidence angle becomes glancing, subplantation of the deposited carbon in vertical direction is significantly reduced, rather bouncing back of the incident carbon with slight modification of surface structure is mainly occurred at the early stage of the film growth. As the surface becomes rougher, shadowing effect at these glancing incidences also becomes more significant, which tends to cause asymmetrical and columnar structure. We describe incidence angle dependence of the evolution of the atomic structure of the film and its corresponding properties.

  • PDF

Adsorption behaviour of film-forming amine on pre-oxidized carbon steel surface

  • Genxian, Lin;Yun, Sun;Canshuai, Liu;Jun, Fang;Lijun, Song;Bin, Liu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1185-1194
    • /
    • 2022
  • The maintenance of condenser main pipe is the key to achieve film-forming amine maintenance effectiveness. In this work, oxygen content, pH and temperature of the solution were controlled to simulate the condition of condenser main pipe, and magnetite coated carbon steel sample was prepared by pre-oxidization. CAM was used to characterize the hydrophobicity of film formed samples. Hydrophobic film was formed on pre-oxidized carbon steel samples when octadecylamine concentration reaches 20 mg/kg. SEM, EDS, EIS, and PD were used to characterize the influence of octadecylamine concentration on maintenance effectiveness. It was found that the maintenance effectiveness was enhanced and the corrosion rate was suppressed with the increase of octadecylamine concentration. FIB and TEM were used to detect the adsorbed octadecylamine film thickness founding that octadecylamine adsorbed onto the surface of pre-oxidized carbon steel by multi-layer adsorption mechanism.

A Study on an Optimal Design of Electric Snow Melting Mat for Vulnerable Walk Zone (제설기반 취약지역 보행자의 전기안전발판(융설용) 최적설계에 관한 연구)

  • Kwon, Jin Wook;Jang, Chul;Hwang, Myung Whan
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.12-18
    • /
    • 2016
  • This paper describes an optimal design of electric snow melting mat on vulnerable walk zone. In order to design an optimal electric power of snow melting mat and protect pedestrians with a nonslip mat, with considering protection of environmental pollution from abusing of the de-icing salts added calcium chloride. We analyzed nine snow melting mats through verification experiment in the condition of $-5^{\circ}C$, depending on three different kinds of heating material, electric heating cable, carbon heating film and carbon textile film. As a consequence, the $150W/m^2$ carbon textile film mat for snow melting was identified as an optimal power input and functional performance for pedestrians' safety on vulnerable walk zone. It is expected that the $150W/m^2$ carbon textile film mat would be useful to reduce slip down accidents by human error.

Evaluation of Friction and Wear Characteristics of Carbon-based Solid Lubricant Films for Surface Application of Compressor Parts (압축기 부품소재 표면 적용을 위한 탄소 기반 고체 윤활막의 마찰 및 마모 특성 평가)

  • Lee, Sung-Jun;Kim, Chang-Lae
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.222-226
    • /
    • 2022
  • Between diaphragms made of stainless steel (SUS), which is the main component of a hydrogen gas compressor, micro-slip occurs owing to repeated bending, resulting in scratches on the surface. The surface scratch of the compressor part is a problem with airtightness, which reduces the efficiency of the compressor; in severe cases, damage is a possibility. In this study, the changes in friction and wear characteristics due to the surface polishing of SUS and carbon-based solid lubricant films (graphene and CNT) were analyzed. Bare SUS, polished SUS, graphene film, and CNT film specimens were prepared. The surface roughness of the SUS was significantly reduced by surface polishing but increased by carbon-based solid lubricating films. In contrast, the friction coefficient maintained a similar value after surface polishing but was significantly reduced by the carbon-based solid lubricant films. In particular, the graphene film exhibited the lowest initial friction coefficient, while the CNT film exhibited the lowest overall average friction coefficient. Regarding the wear rate, polished SUS exhibited the lowest value, but the surface condition of the wear track showed that the carbon-based solid lubricating films were relatively less damaged. Although the wear rate measured was largely attributed to the solid lubricating film peeling off, the SUS surface under the film was considered protected.

Fabrication of Carbon Nanotube Strain Sensors (카본나노튜브 스트레인 센서 제작 기술)

  • Chang, Won-Seok;Song, Sun-Ah;Kim, Jae-Hyun;Han, Chang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.773-777
    • /
    • 2009
  • In this study, the strain sensing characteristics of single-wall carbon nanotubes(SWCNTs) networks were investigated to develop a film sensor for strain sensing. The SWCNTs film are formed on flexible substrates of poly(ethylene terephthalate) (PET) using spray process. In this manner we could control the transparency and obtain excellent uniformity of the networked SWCNT film. The carbon nanotube film is isotropic due to randomly oriented bundles of SWCNTs. Using experimental results it is shown that there is a nearly linear change in resistance across the film when it is subjected to tensile stress. The results presented in this study indicate the potential of such films for high sensitive transparent strain sensors on macro scale.

Thin CNTs nanoliquid film development over a rough rotating disk

  • Swatilekha Nag;Susanta Maity;Sanjeev K. Metya
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.91-104
    • /
    • 2023
  • Development of thin carbon nanotubes (CNTs) nanoliquid film over the rough surface of a horizontal rotating disk is investigated by considering symmetric roughness either along the azimuthal or radial directions. The disk surface is either heated or cooled axisymmetrically from below. The effects of single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs) are analyzed on the film thinning process with different types of base liquids. Closed form solutions for velocity and temperature field are obtained for small values of Reynolds number whereas the numerical solution is derived for moderate values of Reynolds number. It is found that fluid retention / depletion takes place when the roughness is symmetric along the azimuthal / radial directions. It is also seen that the film thinning rate enhances for MWCNTs compare to SWCNTs. Further it is found that two different heat transfer regions exits within the flow domain depending on the fact that heat is transferred from disk to liquid film and vice-versa.