• Title/Summary/Keyword: Carbon fiber reinforced composite

Search Result 681, Processing Time 0.022 seconds

Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Xu, Yi-Peng;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.477-496
    • /
    • 2021
  • The main objective of this paper is to study vibration of sandwich open cylindrical panel with damaged core and FG face sheets based on three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution and boundary conditions. It is seen that for the large amount of power-law index "P", increasing this parameter does not have significant effect on the non-dimensional natural frequency parameters of the FG sandwich curved panel. Results indicate that by increasing the value of isotropic damage parameter "D" up to the unity (fully damaged core) the frequency would tend to become zero. One can dictate the fiber variation profile through the radial direction of the sandwich panel via the amount of "P", "b" and "c" parameters. It should be noticed that with increase of volume fraction of fibers, the frequency parameter of the panels does not increase necessarily, so by considering suitable amounts of power-law index "P" and the parameters "b" and "c", one can get dynamic characteristics similar or better than the isotropic limit case for laminated FG curved panels.

Residual Deformation Analysis of Composite by 3-D Viscoelastic Model Considering Mold Effect (3-D 점탄성 모델을 이용한 복합재 성형후 잔류변형해석 및 몰드 효과 연구)

  • Lee, Hong-Jun;Kim, Wie-Dae
    • Composites Research
    • /
    • v.34 no.6
    • /
    • pp.426-433
    • /
    • 2021
  • The carbon fiber reinforced plastic manufacturing process has a problem in that a dimensional error occurs due to thermal deformation such as residual stress, spring-in, and warpage. The main causes of thermal deformation are various, including the shape of the product, the chemical shrinkage, thermal expansion of the resin, and the mold effect according to the material and surface condition of the mold. In this study, a viscoelastic model was applied to the plate model to predict the thermal deformation. The effects of chemical shrinkage and thermal expansion of the resin, which are the main causes of thermal deformation, were analyzed, and the analysis technique of the 3-D viscoelastic model with and without mold was also studied. Then, the L-shaped mold effect was analyzed using the verified 3D viscoelastic model analysis technique. The results show that different residual deformation occurs depending on the surface condition even when the same mold is used.

A Study on Durability and Strength Properties of Compact Tension Specimen by Material through Simulation Analysis (시뮬레이션 해석을 통한 소재 별 소형 인장 시험편의 내구성 및 강도 특성에 관한 연구)

  • Lee, Jung-Ho;Cho, Jae-Ung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.579-588
    • /
    • 2018
  • There are the plastic resin, fiber and the single metal among materials. There is also the inhomogeneous material whose durability is improved as the composite material with the property of light weight. This study notices the composite material with light weight of CFRP. The strength properties of stainless steel and aluminum which have been used generally are compared and analyzed each other with CFRP. The compact tension specimen of the same standard by each material were designed and the simulation tensile analyses were carried out. As the study result, the maximum deformation, maximum stress and maxium strain energy are shown to be about 0.0148mm, 59.104MPa and 0.00529mJ respectively in case of CFRP specimen model. The maximum deformation, maximum stress and maxium strain energy were shown to be about 0.0106mm, 42.22MPa and 0.002699mJ respectively at stainless steel. It could be checked that the maximum deformation, maximum stress and maxium strain energy of aluminum specimen model were shown to be about 0.023mm, 33.29MPa and 0.00464mJ respectively at stainless steel. Therefore, the results at this study are thought to be applied with the basic data on the strength property of CFRP composite material.

Improving Through-thickness Thermal Conductivity Characteristic of Hybrid Composite with Quantum Annealing (Quantum annealing을 통한 hybrid composite의 두께 방향 열전도 특성 개선)

  • Sung wook Cho;Seong S. Cheon
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.170-178
    • /
    • 2024
  • This study proposes a hybrid composite where a thin copper film (Cu film) is embedded in carbon fiber reinforced plastic (CFRP), and quantum annealing is applied to derive the combination of Cu film placement that maximizes the through-thickness thermal conductivity. The correlation between each ply of CFRP and the Cu film is analyzed through finite element analysis, and based on the results, a combination optimization problem is formulated. A formalization process is conducted to embed the defined problem into quantum annealing, resulting in the formulation of objective functions and constraints regarding the quantity of Cu films that can be inserted into each ply of CFRP. The formulated equations are programmed using Ocean SDK (Software Development Kit) and Leap to be embedded into D-Wave quantum annealer. Through the quantum annealing process, the optimal arrangement of Cu films that satisfies the maximum through-thickness thermal conductivity is determined. The resulting arrangements exhibit simpler patterns as the quantity of insertable Cu films decreases, while more intricate arrangements are observed as the quantity increases. The optimal combinations generated according to the quantity of Cu film placement illustrate the inherent thermal conductivity pathways in the thickness direction, indicating that the transverse placement freedom of the Cu film can significantly affect the results of through-thickness thermal conductivity.

Application of Laser Surface Treatment Technique for Adhesive Bonding of Carbon Fiber Reinforced Composites (탄소복합재 접착공정을 위한 CFRP의 레이저 표면처리 기법의 적용)

  • Hwang, Mun-Young;Kang, Lae-Hyong;Huh, Mongyoung
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.371-376
    • /
    • 2020
  • The adhesive strength can be improved through surface treatment. The most common method is to improve physical bonding by varying the surface conditions. This study presents the effect of laser surface treatment on the adhesive strength of CFRP. The surface roughness was patterned using a 1064 nm laser. The effects of the number of laser shots and the direction and length of the pattern on the adhesion of the CFRP/CFRP single joint were investigated through tensile tests. Tests according to ASTM D5868 were performed, and the bonding mechanism was determined by analyzing the damaged surface after a fracture. The optimized number of the laser shots and the optimized depth of the roughness should be required to increase the bonding strength on the CFRP surface. When considering the shear stress in the tensile direction, the roughness pattern in the direction of 45° that increases the length of the fracture path in the adhesive layer resulted in an increase of the adhesive strength. The surface treatment of the bonding surface using a laser is a suitable method to acquire a mechanical bonding mechanism and improve the bonding strength of the CFRP bonding joint. The study on the optimized laser process parameters is required for utilizing the benefits of laser surface processing.

Durability of Carbon/Epoxy Composites for Train Carbody under Salt Water Environment (염수환경에 노출된 철도차량용 탄소섬유/에폭시 복합재의 내구성 평가)

  • Yoon, Sung-Ho;Hwang, Young-Eun;Kim, Jung-Seok;Yoon, Hyuk-Jin;Kessler, Michael R.
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.4
    • /
    • pp.357-363
    • /
    • 2008
  • This study investigates the durability of carbon/epoxy composites for use on train car bodies under a salt water spray environment. Salt water solution with 5% NaCl, similar to natural salt water, was used for the salt water environmental tests. The specimens were obtained from a composite panel consisting of an epoxy matrix reinforced with T700 carbon fabric. The specimens were exposed to the salt water environment for up to 12 months. Mechanical tests were performed to obtain tensile properties, flexural properties, and shear properties. Dynamic mechanical analysis was used to measure such thermal properties as storage modulus, loss modulus, and tan $\delta$. Also FT/IR tests were conducted to investigate changes in chemical structure with exposure. The results revealed that fiber-dominated mechanical properties were not affected much by exposure time, but matrix-dominated mechanical properties decreased with increasing exposure time. Storage modulus was not very sensitive to exposure time, but glass transition temperature was affected, slightly decreasing with increasing exposure time. Although the peak intensity of FT/IR curves was affected slightly by exposure time, the peak shape and peak location of FT/IR curves were not noticeably changed. Carbon/epoxy composites used for this study were relatively stable to the salt water environment.

Optimum Conditions for Improvement of Mechanical and Interfacial Properties of Thermal Treated Pine/CFRP Composites (열처리된 Pine/탄소섬유 복합재료의 기계적 및 계면물성 향상을 위한 최적 조건)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.241-246
    • /
    • 2017
  • The brittle nature in most FRP composites is accompanying other forms of energy absorption mechanisms such as fibre-matrix interface debonding and ply delamination. It could play an important role on the energy absorption capability of composite structures. To solve the brittle nature, the adhesion between pines and composites was studied. Thermal treated pines were attached on carbon fiber reinforced polymer (CFRP) by epoxy adhesives. To find the optimum condition of thermal treatment for pine, two different thermal treatments at 160 and $200^{\circ}C$ were compared to the neat case. To evaluate mechanical and interfacial properties of pines and pine/CFRP composites, tensile, lap shear and Izod test were carried out. The bonding force of pine grains was measured by tensile test at transverse direction and the elastic wave from fracture of pines was analyzed. The mechanical, interfacial properties and bonding force at $160^{\circ}C$ treated pine were highest due to the reinforced effect of pine. However, excessive thermal treatment resulted in the degradation of hemicellulose and leads to the deterioration in mechanical and interfacial properties.

Effect of Adhesive Shear Strength of CFRP/Ni-Cr Alloy Under Severe Environmental Condition (가혹 환경이 복합재/Ni-Cr 합금 접착전단강도에 미치는 영향 연구)

  • Cho, Hyeon-Tae;Park, Seong-Min;Kim, Min-Jun;Hoang, Van-Tho;Kim, Hak-Inn;Son, Myung-Sook;Ahn, Jong-Kee;An, Ji-Min;Choi, Jin-Ho;Nam, Young-Woo;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.275-281
    • /
    • 2020
  • The mechanical property related to lap shear strength of the joint structure between carbon fiber reinforced polymer (CFRP) composite and metal (Ni-Cr Alloy) under varying environmental conditions (temperature and humidity) was studied in order to apply to the aircraft fan blade. Room temperature dry (RTD), elevated temperature wet (ETW), and cold temperature dry (CTD) environmental conditions were chosen for investigation based on the flight conditions of aircraft. Lap shear strength tests were conducted according to ASTM Standard D3528 to evaluate the shear strength. The microstructure characteristic of failure zone was analyzed by SEM images to check the adhesive shear strength with the three environmental conditions. In comparison with shear strength for the RTD condition, the shear strength in the ETW condition was reduced by 72.8% while those for the CTD condition increased by 56.5%. The moisture absorption and high temperature in ETW condition strongly had an affect on mechanical property of adhesive, while cold temperature could enhance the adhesive shear strength due to the higher brittleness.

Effect of Mechanical and Toughening Characteristics of Epoxy/Carbon Fiber Composite by Polyamide 6 Particles, CTBN Addition Technology (Polyamide 6 입자 및 CTBN 첨가 기술에 따른 에폭시/탄소섬유 복합재의 강인화 효과 및 기계적 특성)

  • Sung-Youl Bae;Kyo-Moon Lee;Sanjay Kumar;Ji-Hun Seok;Jae-Wan Choi;Woo-Hyuk Son;Yun-Hae Kim
    • Composites Research
    • /
    • v.36 no.5
    • /
    • pp.355-360
    • /
    • 2023
  • Epoxy-based carbon fibers reinforced plastic (CFRP) exhibit limitations in their suitability for industrial applications due to high brittleness characteristics. To address this challenge, extensive investigations are underway to enhance their toughness properties. This research focuses on evaluating the toughening mechanisms achieved by Polyamide 6 particles(p-PA6) and Carboxyl-Terminated Butadiene-Acrylonitrile (CTBN) elastomer, with a specific emphasis on utilizing minimal additive quantities. The study explores the impact of varying concentrations of p-PA6 and CTBN additives, namely 0.5, 1, 2.5, and 5 phr, through comprehensive Mode I fracture toughness and tensile strength analyses. The inclusion of p-PA6 demonstrated improvements in toughness when introduced at a relatively low content of 1phr. This improvement manifested as a sustained fracture behavior, contributing to enhanced toughness, while simultaneously maintaining the material's tensile strength. Furthermore, the investigation revealed that the incorporation of p-PA6 affected in particle aggregation, thus influencing the overall toughening mechanism. Incorporation of CTBN, an elastomeric modifier, exhibited a pronounced increase in fracture toughness at higher concentrations of 2.5 phr and beyond. However, this increase in toughness was accompanied by a reduction in tensile strength, resulting in fracture behavior similar to conventional CFRP exhibiting brittleness. The synergy between pPA6, CTBN and CFRP appeared to marginally enhance tensile strength under specific content conditions. As a result of this study, optimized conditions for the application of the p-PA6, CTBN toughening technology have been identified and established.

Flexural Strengthening Effects of RC Beam Reinforced with Pre-stressing Plate (긴장을 가한 보강 플레이트로 보강된 RC 보의 휨보강 효과)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.171-178
    • /
    • 2019
  • Fiber-reinforced polymer (FRP) composites have proved to be reliable as strengthening materials. Most of existing studies used single types of FRP composites. Therefore, in this experimental study, carbon FRP sheet, aramid FRP sheet, and hybrid FRP plate including glass fibers were fabricated, and the effect of pre-stressed FRP composites on flexural strengthening of reinforced concrete (RC) beams was investigated. In total, eight RC beam specimens were fabricated, including one control beam (specimen N) without FRP composites and seven FRP-strengthened beams. The main parameters were type of FRP composite, the number of anchors used for pre-stressing, and thickness of FRP plates. As a result, the beam strengthened with pre-stressed FRP plate showed superior performance to the non-strengthened one in terms of initial strength, strength and stiffness at yielding, and ultimate strength. As the number of anchors and thickness of FRP plate (i.e., amount of FRP plates) increased, the strengthening effect increased as well. When hybrid FRP plates were pre-stressed, the strengthening effect was higher in comparison with pre-stressed single type FRP plate.