• Title/Summary/Keyword: Carbon estimation

Search Result 571, Processing Time 0.029 seconds

Development of a Biophysical Rice Yield Model Using All-weather Climate Data (MODIS 전천후 기상자료 기반의 생물리학적 벼 수량 모형 개발)

  • Lee, Jihye;Seo, Bumsuk;Kang, Sinkyu
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.721-732
    • /
    • 2017
  • With the increasing socio-economic importance of rice as a global staple food, several models have been developed for rice yield estimation by combining remote sensing data with carbon cycle modelling. In this study, we aimed to estimate rice yield in Korea using such an integrative model using satellite remote sensing data in combination with a biophysical crop growth model. Specifically, daily meteorological inputs derived from MODIS (Moderate Resolution imaging Spectroradiometer) and radar satellite products were used to run a light use efficiency based crop growth model, which is based on the MODIS gross primary production (GPP) algorithm. The modelled biomass was converted to rice yield using a harvest index model. We estimated rice yield from 2003 to 2014 at the county level and evaluated the modelled yield using the official rice yield and rice straw biomass statistics of Statistics Korea (KOSTAT). The estimated rice biomass, yield, and harvest index and their spatial distributions were investigated. Annual mean rice yield at the national level showed a good agreement with the yield statistics with the yield statistics, a mean error (ME) of +0.56% and a mean absolute error (MAE) of 5.73%. The estimated county level yield resulted in small ME (+0.10~+2.00%) and MAE (2.10~11.62%),respectively. Compared to the county-level yield statistics, the rice yield was over estimated in the counties in Gangwon province and under estimated in the urban and coastal counties in the south of Chungcheong province. Compared to the rice straw statistics, the estimated rice biomass showed similar error patterns with the yield estimates. The subpixel heterogeneity of the 1 km MODIS FPAR(Fraction of absorbed Photosynthetically Active Radiation) may have attributed to these errors. In addition, the growth and harvest index models can be further developed to take account of annually varying growth conditions and growth timings.

Estimation of Terminal Sire Effect on Swine Growth and Meat Quality Traits (돼지 성장 및 육질 형질에 영향하는 종료웅돈의 효과)

  • Kim, H.S.;Kim, B.W.;Kim, H.Y.;Iim, H.T.;Yang, H.S.;Lee, J.I.;Joo, Y.K.;Do, C.H.;Joo, S.T.;Jeon, J.T.;Lee, J.G.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.161-170
    • /
    • 2007
  • A submerged biofilm sequencing batch reactor (SBSBR) process, which liquor was internally circulated through sandfilter, was designed, and performances in swine wastewater treatment was evaluated under a condition of no external carbon source addition. Denitrification of NOx-N with loading rate in vertical and slope type of sandfilter was 19% and 3.8%, respectively, showing approximately 5 times difference, and so vertical type sandfilter was chosen for the combination with SBSBR. When the process was operated under 15 days HRT, 105L/hr.m3 of internal circulation rate and 54g/m3.d of NH4-N loading rate, treatment efficiencies of STOC, NH4-N and TN (as NH4-N plus NOx-N) was 75%, 97% and 85%, respectively. By conducting internal circulation through sandfilter, removal performances of TN were enhanced by 14%, and the elevation of nitrogen removal was mainly attributed to occurrence of denitrification in sandfilter. Also, approximately 57% of phosphorus was removed with the conduction of internal circulation through sandfilter, meanwhile phosphorus concentration in final effluent rather increased when the internal circulation was not performed. Therefore, It was quite sure that the continuous internal circulation of liquor through sandfilter could contribute to enhancement of biological nutrient removal. Under 60g/m3.d of NH4-N loading rate, the NH4-N level in final effluent was relatively low and constant(below 20mg/L) and over 80% of nitrogen removal was maintained in spite of loading rate increase up to 100g/m3.d. However, the treatment efficiency of nitrogen was deteriorated with further increase of loading rate. Based on this result, an optimum loading rate of nitrogen for the process would be 100g/m3.d.

Theoretical Study on Optimal Conditions for Absorbent Regeneration in CO2 Absorption Process (이산화탄소 흡수 공정에서 흡수액 최적 재생 조건에 대한 이론적 고찰)

  • Park, Sungyoul
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1002-1007
    • /
    • 2012
  • The considerable portion of energy demand has been satisfied by the combustion of fossil fuel and the consequent $CO_2$ emission was considered as a main cause of global warming. As a technology option for $CO_2$ emission mitigation, absorption process has been used in $CO_2$ capture from large scale emission sources. To set up optimal operating parameters in $CO_2$ absorption and solvent regeneration units are important for the better performance of the whole $CO_2$ absorption plant. Optimal operating parameters are usually selected through a lot of actual operation data. However theoretical approach are also useful because the arbitrary change of process parameters often limited for the stability of process operation. In this paper, a theoretical approach based on vapor-liquid equilibrium was proposed to estimate optimal operating conditions of $CO_2$ absorption process. Two $CO_2$ absorption processes using 12 wt% aqueous $NH_3$ solution and 20 wt% aqueous MEA solution were investigated in this theoretical estimation of optimal operating conditions. The results showed that $CO_2$ loading of rich absorbent should be kept below 0.4 in case of 12 wt% aqueous $NH_3$ solution for $CO_2$ absorption but there was no limitation of $CO_2$ loading in case of 20 wt% aqueous MEA solution for $CO_2$ absorption. The optimal regeneration temperature was determined by theoretical approach based on $CO_2$ loadings of rich and lean absorbent, which determined to satisfy the amount of absorbed $CO_2$. The amount of heating medium at optimal regeneration temperature is also determined to meet the difference of $CO_2$ loading between rich and lean absorbent. It could be confirmed that the theoretical approach, which accurately estimate the optimal regeneration conditions of lab scale $CO_2$ absorption using 12 wt% aqueous $NH_3$ solution could estimate those of 20 wt% aqueous MEA solution and could be used for the design and operation of $CO_2$ absorption process using chemical absorbent.

Stand Yield Table and Commercial Timber Volume of Eucalyptus Pellita and Acacia Mangium Plantations in Indonesia (인도네시아 유칼립투스 및 아카시아 조림지의 임분수확표 및 이용가능 목재생산량 추정)

  • Son, Yeong-Mo;Kim, Hoon;Lee, Ho-Young;Kim, Cheol-Min;Kim, Cheol-Sang;Kim, Jae-Weon;Joo, Rin-Won;Lee, Kyeong-Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • This study was conducted to develop a stand growth model and a stand yield table for Eucalyptus pellita and Acacia mangium plantations in Kalimantan, Indonesia. To develop a stand growth model, Weibull robability density function, a diameter class model, was applied in this study. In the development of stand growth model by site index and stand age, a hierarchy is generally required - estimation, recovery and prediction of the diameter class model. A number of grow equations were also involved in each process to estimate diameter, height, basal area, minimum or maximum diameter. To examine whether the grow equations are adequate for Eucalyptus pellita or Acacia mangium plantations, a fitness index was analyzed for each equation. The results showed that fitness indices were ranged from 65 to 89% for Eucalyptus pellita plantations and from 72 to 95% for Acacia mangium plantations. As being highly adequate for the plantations, a stand yield table was developed based on the resulted growth model, and applied to estimate the stand growth with midium site index for 10-year period. The highest annual stand growth of Eucalyptus pellita plantations was estimated to be 21.25 $m^3$/ha, while that of Acacia mangium plantations was 27.5 $m^3$/ha. In terms of annual stand growth, Acacia mangium plantations appeared to be more beneficial than Eucalyptus pellita plantations. Also, to estimate commercial timber volume available from the plantations, an assumption that a log would be cut by 2.7 m in length and the rest of the log would be cut by 1.5m was involved. The commercial timber volume available from Eucalyptus pellita plantations was 68.0 $m^3$/ha, 33% from the total stand volume, 203.2 $m^3$/ha. Also 96.7 $m^3$/ha of commercial timbers were available from Acacia mangium plantations, which was 42% from the 232.9 $m^3$/ha in total. Presenting a good information about the stand growth in Eucalyptus pellita and Acacia mangium plantations, this study might be useful for whom proceeds or considers an abroad plantation for merchantable timber production or carbon credit in tropical regions.

Trace Metals in Surface Sediments of Garolim Bay, Korea (가로림만 표층 퇴적물 내 미량금속 분포 특성)

  • PARK, KYOUNGKYU;CHOI, MANSIK;JOE, DONGJIN;JANG, DONGJUN;PARK, SOJUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.25 no.2
    • /
    • pp.9-25
    • /
    • 2020
  • In 2010 and 2015, total 77 surface sediment samples were collected to assess the anthropogenic effects of trace metals in surface sediments of Garolim Bay, and the physical characteristics (particle size and specific surface area) and geochemical components (major (Al, Ca, Fe, K, Ba) and trace metals (Mn, Cs, Cr, Co, Ni, Cu, Zn, Pb), organic carbon and calcium carbonate) were analyzed. Mean grain size of Garolim Bay surface sediments ranged from 0.51-5.58 Ø (mean 3.98 Ø) and increased from the inlet of bay to the inner bay, and from the waterway to the land. Most of the metal concentrations except for some elements showed the similar distribution to those of mean grain size and specific surface area. As the particle size decreased and the specific surface area increased, the metal concentration increased. In order to estimate the factors controlling the concentration of trace metals, factor analysis was performed, and three factors were extracted (92.7% of the total variation). Factor 1 accounted for 71.3% of the total variation, which was a grain size factor. Factor 2 accounted for 14.2% of the total variation, Factor 3 accounted for 7.2% of the total variance. Enrichment factor was calculated using the particle size corrected background concentration. Metals with a enrichment factor of 1.5 or higher and the number of samples were 4 for Cr (St. 1, 16, 27, 39) and 1 for Pb (St. 39), but there were little differences in the concentrations of 1M HCl leached metals for these metals. The percentage of 1M HCl leached fraction to total metal concentration decreased in the order of Pb~Co>Cu>Zn~Mn>Ni>Cr. Comparing this value with contaminated and clean sediments in other coastal areas, the percentages for each metal were similar regardless of the trace metal levels in all regions. This fact might be resulted from the reaction between the 1M HCl solution and the different sediment constituents, indicating that there is a limit to apply this percentage of leached metal to the estimation of the contamination extent.

Estimation of Changes in Potential Forest Area under Climate Change (기후변화하(氣候變化下)에서 잠재삼림면적(潛在森林面積)의 변화(變化) 예측(豫測))

  • Cha, Gyung Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.3
    • /
    • pp.358-365
    • /
    • 1998
  • To offer the basic information for sustainable production of forest resources and conservation of the global environment, change in potential natural vegetation (PNV) associated with climate change due to doubling atmospheric carbon dioxide ($2{\times}CO_2$) was estimated with the global natural vegetation mapping system based an K${\ddot{o}}$ppen scheme. The system interpolates climate data spherically to each grid cell, determines the vegetation types onto the grid cell, and produces potential vegetation map and area on the globe and continents. The climate data consist of the current, ($1{\times}CO_2$) climate prior to AD 1958 observed at some 2,000 stations and the doubling ($2{\times}CO_2$) climate estimated from Meteorological Research Institute of Japan. The vegetation zone under the $2{\times}CO_2$ climate scenario expanded mainly toward the poles due to the rise in temperature. The changed PNV area on the globe amounts to 1/3 (4.91 billion (G) ha) of the total land area (15.04 Gha). Kappa statistic for judging agreement between the patterns of vegetation distribution under $1{\times}CO_2$ climate and $2{\times}CO_2$ climates shows good agreement (0.63) for the globe as a whole. The most stable areas are desert and ice. The potential forest area (PFA) was estimated at 6.82 Gha of the land area in $2{\times}CO_2$ climate scenario. In terms of continental changes in PFA, North America and Asis are increased under the $2{\times}CO_2$ climate. However, the potential forest arms of the other continents are decreased by the climate. Europe has no change in the PFA. Especially, the expansion of desert area in Oceania would be accelerated by the $2{\times}CO_2$ climate.

  • PDF

Analysis of CO2 Emission Intensity per Industry using the Input-Output Tables 2003 (산업연관표(2003년)를 활용한 산업별 CO2 배출 원단위 분석)

  • Park, Pil-Ju;Kim, Mann-Young;Yi, Il-Seuk
    • Environmental and Resource Economics Review
    • /
    • v.18 no.2
    • /
    • pp.279-309
    • /
    • 2009
  • Greenhouse gas emissions should be precisely forecast to reduce the emissions from industrial production processes. This study calculated the direct and indirect $CO_2$ emission intensities of 401 industries using the Input-Output tables 2003 and statistical data on the amount of energy use. This study had some limitations in drawing study findings because overseas data were used given the lack of domestic data. Other limiting factors included the oil distribution problems in the oil refinery sector, re-review of carbon neutral, and insufficient consideration of waste treatment. Nonetheless, this study is very meaningful since the direct and indirect $CO_2$ emission intensities of 401 industries were calculated. Specifically, this study considered from the zero-waste perspective the effects of waste, which attract interest worldwide since coke gas and gas from the steel industry are obtained as byproducts for the first time in Korea. According to the results of the analysis of $CO_2$ emission intensity per industry, typical industries whose indirect $CO_2$ emission intensity is high include crude steel making, Remicon, steel wire rods & track rail, cast iron, and iron reinforcing rods & bar steel. These industries produce products using the raw materials produced in the industrial sector whose $CO_2$ emission intensity is high. The representative industries whose direct $CO_2$ emission intensity is high include cement, pig iron, lime & plaster products, andcoal-based compounds. These industries extract raw ore from nature and refine them into raw materials that are useful in other industries. The findings in this study can be effectively used for the following case: estimation of target $CO_2$ emission reduction level reflecting each industrial sector's characteristics, calculation of potential emission reduction of each policy to reduce $CO_2$ emissions, identification of a firm's $CO_2$ emission level, and setting of the target level of emission reduction. Moreover, the findings in this study can be utilized widely in fields such as System of integrated Environmental and Economic Accounting(SEEA) and Material Flow Analysis(MFA) as the current topic of research in Korea.

  • PDF

The Evaluation of Meteorological Inputs retrieved from MODIS for Estimation of Gross Primary Productivity in the US Corn Belt Region (MODIS 위성 영상 기반의 일차생산성 알고리즘 입력 기상 자료의 신뢰도 평가: 미국 Corn Belt 지역을 중심으로)

  • Lee, Ji-Hye;Kang, Sin-Kyu;Jang, Keun-Chang;Ko, Jong-Han;Hong, Suk-Young
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.481-494
    • /
    • 2011
  • Investigation of the $CO_2$ exchange between biosphere and atmosphere at regional, continental, and global scales can be directed to combining remote sensing with carbon cycle process to estimate vegetation productivity. NASA Earth Observing System (EOS) currently produces a regular global estimate of gross primary productivity (GPP) and annual net primary productivity (NPP) of the entire terrestrial earth surface at 1 km spatial resolution. While the MODIS GPP algorithm uses meteorological data provided by the NASA Data Assimilation Office (DAO), the sub-pixel heterogeneity or complex terrain are generally reflected due to coarse spatial resolutions of the DAO data (a resolution of $1{\circ}\;{\times}\;1.25{\circ}$). In this study, we estimated inputs retrieved from MODIS products of the AQUA and TERRA satellites with 5 km spatial resolution for the purpose of finer GPP and/or NPP determinations. The derivatives included temperature, VPD, and solar radiation. Seven AmeriFlux data located in the Corn Belt region were obtained to use for evaluation of the input data from MODIS. MODIS-derived air temperature values showed a good agreement with ground-based observations. The mean error (ME) and coefficient of correlation (R) ranged from $-0.9^{\circ}C$ to $+5.2^{\circ}C$ and from 0.83 to 0.98, respectively. VPD somewhat coarsely agreed with tower observations (ME = -183.8 Pa ~ +382.1 Pa; R = 0.51 ~ 0.92). While MODIS-derived shortwave radiation showed a good correlation with observations, it was slightly overestimated (ME = -0.4 MJ $day^{-1}$ ~ +7.9 MJ $day^{-1}$; R = 0.67 ~ 0.97). Our results indicate that the use of inputs derived MODIS atmosphere and land products can provide a useful tool for estimating crop GPP.

An Introduction of Korean Soil Information System (한국 토양정보시스템 소개)

  • Hong, S. Young;Zhang, Yong-Seon;Hyun, Byung-Keun;Sonn, Yeon-Kyu;Kim, Yi-Hyun;Jung, Sug-Jae;Park, Chan-Won;Song, Kwan-Cheol;Jang, Byoung-Choon;Choe, Eun-Young;Lee, Ye-Jin;Ha, Sang-Keun;Kim, Myung-Suk;Lee, Jong-Sik;Jung, Goo-Bok;Ko, Byong-Gu;Kim, Gun-Yeob
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • Detailed information on soil characteristics is of great importance for the use and conservation of soil resources that are essential for human welfare and ecosystem sustainability. This paper introduces soil inventory of Korea focusing on national soil database establishment, information systems, use, and future direction for natural resources management. Different scales of soil maps surveyed and soil test data collected by RDA (Rural Development Administration) were computerized to construct digital soil maps and database. Soil chemical properties and heavy metal concentrations in agricultural soils including vulnerable agricultural soils were investigated regularly at fixed sampling points. Internet-based information systems for soil and agro-environmental resources were developed based on 'National Soil Survey Projects' for managing soil resources and for providing soil information to the public, and 'Agroenvironmental Change Monitoring Project' to monitor spatial and temporal changes of agricultural environment will be opened soon. Soils data has a great potential of further application in estimation of soil carbon storage, water capacity, and soil loss. Digital mapping of soil and environment using state-of-the-art and emerging technologies with a pedometrics concept will lead to future direction.

Estimation of Surface fCO2 in the Southwest East Sea using Machine Learning Techniques (기계학습법을 이용한 동해 남서부해역의 표층 이산화탄소분압(fCO2) 추정)

  • HAHM, DOSHIK;PARK, SOYEONA;CHOI, SANG-HWA;KANG, DONG-JIN;RHO, TAEKEUN;LEE, TONGSUP
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.3
    • /
    • pp.375-388
    • /
    • 2019
  • Accurate evaluation of sea-to-air $CO_2$ flux and its variability is crucial information to the understanding of global carbon cycle and the prediction of atmospheric $CO_2$ concentration. $fCO_2$ observations are sparse in space and time in the East Sea. In this study, we derived high resolution time series of surface $fCO_2$ values in the southwest East Sea, by feeding sea surface temperature (SST), salinity (SSS), chlorophyll-a (CHL), and mixed layer depth (MLD) values, from either satellite-observations or numerical model outputs, to three machine learning models. The root mean square error of the best performing model, a Random Forest (RF) model, was $7.1{\mu}atm$. Important parameters in predicting $fCO_2$ in the RF model were SST and SSS along with time information; CHL and MLD were much less important than the other parameters. The net $CO_2$ flux in the southwest East Sea, calculated from the $fCO_2$ predicted by the RF model, was $-0.76{\pm}1.15mol\;m^{-2}yr^{-1}$, close to the lower bound of the previous estimates in the range of $-0.66{\sim}-2.47mol\;m^{-2}yr^{-1}$. The time series of $fCO_2$ predicted by the RF model showed a significant variation even in a short time interval of a week. For accurate evaluation of the $CO_2$ flux in the Ulleung Basin, it is necessary to conduct high resolution in situ observations in spring when $fCO_2$ changes rapidly.