• 제목/요약/키워드: Carbon emission efficiency

검색결과 255건 처리시간 0.024초

FT반응 Off-gas를 이용한 고압축비 전기점화 엔진의 연소 및 배기가스 특성에 관한 연구 (Combustion and Emission Characteristics in a High Compression Ratio Spark Ignition Engine using Off-gas from FT reaction)

  • 정탄;이준순;이용규;김창업;오승묵
    • 한국분무공학회지
    • /
    • 제23권3호
    • /
    • pp.114-121
    • /
    • 2018
  • FT process is a technology of chemical reactions that converts a mixture of carbon monoxide and hydrogen into liquid hydrocarbons. During the FT process unreacted gas, known as Off-gas which has low-calorie, is discharged. In this study, we developed an engine that utilize simulated Off-gas, and studied the characteristics of the engine. The off-gas composition is assumed to be $H_2$ 70%, CO 15%, $CO_2$ 15% respectively. Under stoichiometric air-fuel ratio, the experiment was conducted at WOT and IMEP 0.3 Mpa changing compression ratio. Ignition timing was applied with MBT timing. Maximum indicated thermal efficiency 37% was achieved at compression ratio 15 under WOT. CO, $CO_2$ and $NO_x$ were influenced by changing compression ratio, and CO emission was satisfied with the US Tier 4 standard for nonroad engine over the entire experimental conditions.

노후 고등학교 건물의 에너지효율화 리모델링을 위한 요소기술의 성능 평가 (Evaluating Performance of Energy Conservation Measures on Energy-Efficient Remodeling at Deteriorated High School Buildings)

  • 이상춘;최영준;최율
    • KIEAE Journal
    • /
    • 제13권5호
    • /
    • pp.97-102
    • /
    • 2013
  • Many countries over the world have acknowledged the global warming problem by greenhouse gas emission and tried to solve the problem. The Korean government has also taken many actions such as The Act on Low Carbon, Green Growth and on Promoting Green Building in that architectural building section takes 1/4 of national greenhouse gas emission. Under the situation that buildings constructed 15 years ago when insulation standards were reinforced take about 74%, The Plan on Vitalizing Green Remodeling, finally established on July 2013, will induce energy-efficient remodeling of deteriorated buildings. Using the energy simulation by the Visual DOE 4.0 program, this paper proposed the ways of energy-efficient remodeling of deteriorated high school buildings by measuring energy saving performance of factors that were drawn from the previous study. The factors considered are insulation, window's SHGC, south louver, system efficiency, and indoor setting temperature. Among them, all factors except SHGC proved contribution to reducing energy use at deteriorated high school buildings, compared with the baseline energy consumption.

창호시스템의 환경성능평가기법 정립에 관한 연구 (A study on the proposal of environmental capacity criterion method for windows system in buildings)

  • 최두성;김은규;조균형
    • 한국태양에너지학회 논문집
    • /
    • 제24권3호
    • /
    • pp.101-109
    • /
    • 2004
  • This research investigates the life-cycle energy consumption of the windows used for the building's exterior cladding, and its environmental potential aspects by utilizing the LCA. The research scope has taken account of the entire life-cycle of the windows from the extraction of raw materials to its disposal, of which given sample building type is an apartment building. Results gained from the LCA of the windows as one of the steps in analysis reflects the current global interest and analysis trend towards the world's environmental issue on all fields of industry including the architectural industry, of which its newly established standards of architectural windows can further promote more environmentally sustainable factor compared to the previous analysis (focused more on energy efficiency assessment of the use stage).

탄소배출권 투자와 위험관리방안 연구 - 일차배출권(Primary CER) 투자 시 등록위험 및 가격변동 위험을 중심으로 - (Study on the Risk Management of the CERs Investment - Regarding Registration Risks and Price Change Risk in Investing Primary CERs -)

  • 이창석;김윤성;전의찬
    • 한국기후변화학회지
    • /
    • 제2권2호
    • /
    • pp.115-131
    • /
    • 2011
  • 온실가스의 감축 규제가 세계 경제에 미치는 영향은 매우 클 것으로 예상되며, 산업 전반에 걸쳐 적절한 대응방안 도입이 필요한 시점이다. 이에 본 연구는 온실가스 감축 규제에 대응하기 위해서 취해질 수 있는 온실가스 저감 기술, 설비 개발, 에너지 절약 및 효율화 활동, 탄소배출권 구입을 통한 탄소 상쇄 등 여러 경제적 행위 중에서 탄소배출권 투자에 초점을 맞추어 연구하였다. 특히, 탄소배출권 투자 시 고려해야 할 위험 요인 중에서 UN 등록 거절 위험과 탄소배출권 가격변동성 위험을 최소화하기 위한 위험관리 모형을 설계하고 검증하였다. 이를 통해 탄소 상쇄가 필요한 다양한 분야의 이해관계자가 최적화된 탄소배출권과 관련한 전략을 수립할 수 있도록 제안하는 것을 목표로 한다. 기후변화에 따른 새로운 메커니즘에 국내 금융회사들이 신속히 대응할 수 있는 방법을 모색하고자 한 본 연구는 현재 청정개발체제(CDM)에서 발급되는 탄소배출권(CER)에 국한되지 않고 공동이행체제(JI) 프로젝트에서 발급되는 탄소배출권(ERU), 배출권거래제(ET)에서 인정되는 탄소배출권(AAU) 뿐만 아니라 향후 새롭게 인정될 탄소배출권에도 유사하게 적용될 수 있을 것이다.

한국 배출권거래제 정책 변동의 목적 부합성 연구 (A Study of Policy Change on K-ETS and its Objective Conformity)

  • 오일영;윤영채
    • 한국기후변화학회지
    • /
    • 제9권4호
    • /
    • pp.325-342
    • /
    • 2018
  • The Korea Emissions Trading Scheme ( K-ETS), which manages roughly 70% of the greenhouse gas emissions in South Korea, was initiated in 2015, after implementation of its 1st basic plan and the 1st allocation plan (2014) for the 1st phase (2015-2017). During the three and a half years since the launch of K-ETS, there have been critical policy change such as adjustment of the institutions involved, development and revision of the 2030 national GHG reduction roadmap, and change in the allocation plans. Moreover, lack of liquidity and fluctuation of carbon prices in the K-ETS market during this period has forced the Korean government to adjust the flexibility mechanism and auction permits of the market stability reserve. To evaluate the policy change in the K-ETS regarding conformance to its objectives, this study defines three objectives (Environmental Effectiveness, Cost Effectiveness and Economic Efficiency) and ten indicators. Evaluation of Environmental Effectiveness of K-ETS suggests that the national GHG reduction roadmap, coverage of GHG emitters and credibility of MRV positively affect GHG mitigation. However, there was a negative policy change implemented in 2017 that weakened the emission cap during the 1st phase. In terms of the Cost Effectiveness, the K-ETS policies related to market management and flexibility mechanism (e.g. banking, borrowing and offsets) were improved to deal with the liquidity shortage and permit price increase, which were caused by policy uncertainty and conservative behavior of firms during 2016-2018. Regarding Economic Efficiency, K-ETS expands benchmark?based allocation and began auction-based allocation; nevertheless, free allocation is being applied to sectors with high carbon leakage risk during the 2nd phase (2018-2020). As a result, it is worth evaluating the K-ETS policies that have been developed with respect to the three main objectives of ETS, considering the trial?and?error approach that has been followed since 2015. This study suggests that K-ETS policy should be modified to strengthen the emission cap, stabilize the market, expand auction-based allocation and build K-ETS specified funds during the 3rd phase (2021-2025).

Low Calorific Gasturbine 매립지 적용 및 유리온실 운용기술 설계 (Design for Landfill Gas Appliation by Low Calorific Gas Turbine and Green House Optimization Technology)

  • 허광범;박정극;이정빈;임상규
    • 신재생에너지
    • /
    • 제6권2호
    • /
    • pp.27-32
    • /
    • 2010
  • Low Calorific Gas Turbine (LCGT) has been developed as a next generation power system using landfill gas (LFG) and biogas made from various organic wastes, food Waste, waste water and Livestock biogas. Low calorific fuel purification by pretreatment system and carbon dioxide fixation by green house system are very important design target for the optimum applications of LCGT. Main troubles of Low Calorific Gas Turbine system was derived from the impurities such as hydro sulfide, siloxane, water contained in biogas. Even if the quality of the bio fuel is not better than natural gas, LCGT may take low quality gas fuel and environmental friendly power system. The mechanical characterisitics of LCGT system is a high energy efficiency (>70%), wide range of output power (30 kW - 30 MW class) and very clean emission from power system (low NOx). A green house has been designed for four different carbon dioxide concentration from ambient air to 2000 ppm by utilizing the exhaust gas and hot water from LCGT system. LCGT is expected to contribute achieving the target of Renewable Portfolio Standards (RPS).

폐기물 열분해 합성가스를 이용한 발전용 엔진구동에 대한 실험적 연구 (An Experimental Study on the Operation of a Power Generation Engine with Syngas from RPF)

  • 정효재;이정우;이재욱;문지홍;최인수;박상신;황정호;류태우;이은도
    • 한국연소학회지
    • /
    • 제15권3호
    • /
    • pp.48-56
    • /
    • 2010
  • Performances of power generation engine were investigated with syngas from RPF. A stoker type, multi-staged pyrolysis-gasification system, was employed for syngas generation and the syngas was refined with the sequential cleaning processes composed of a gas cooler, a bag filter and a wet scrubber. 20 kWe commercial syngas power generation engine was adopted to burn the cleaned syngas which is mainly composed of hydrogen, carbon monoxide, carbon dioxide and methane. The performance of the engine was tested with various syngas compositions and the results were compared to LNG case. Electric power output, exhaust gas temperature, and emission characteristics were measured, and the efficiency of engine generation was investigated as a function of load of power generation.

복합적층 구조부재의 계면수 변화에 따른 에너지흡수특성 (Energy Absorption Characteristics of Composite Laminated Structural Member According to the Interface Number)

  • 황우채;이길성;차천석;정종안;한길영;양인영
    • 한국생산제조학회지
    • /
    • 제20권1호
    • /
    • pp.17-22
    • /
    • 2011
  • Ultimate goals in vehicle design can be summarized as environment-friendliness and safety. Along with these requirements, the importance of natural environment conservation has been focused lately. Therefore, reduced emission from vehicle and improved efficiency has become the top priority projects throughout the world. CFRP(Carbon Fiber Reinforced Plastics) of the advanced composite materials as structure materials for vehicles, has a widely application in lightweight structural materials of air planes, ships and automobiles because of high strength and stiffness. This study is to investigate the energy absorption characteristics of CFRP hat-shaped section members under the axial impact collapse test. The CFRP hat-shaped section members which manufactured from unidirectional prepreg sheets were made of 8plies. The axial impact collapse tests were carried out for each section members. The collapse mode and energy absorption characteristics were analyzed for CFRP hat-shaped section member according to the interface numbers(2, 3, 4, 6 and 7).

디젤기관의 대체연료 이용에 관한 연구 (I) (기본성능) (A Study on Alternative Fuel as Fuel Substitutes in a DI Diesel Engine(I) (Basic Performance))

  • 오영택;정규조;촌산정
    • 오토저널
    • /
    • 제10권5호
    • /
    • pp.61-68
    • /
    • 1988
  • This paper reports the basic performance of a naturally aspirated DI diesel engine which is used widely in industry and agriculture when vegetable oils are used as fuel substitutes. In this paper, the properties of vegetable oils as diesel fuel were investigated and the load-performance of diesel engine when vegetable oils were used, as tested compared against diesel fuel. The general objective of this investigation is to realize an efficient, clean, and low carbon deposit combustion of the vegetable oils in diesel engines, showing their feasibility as diesel fuel substitutes. The results of this experiment were as follows; (1) Compared with diesel fuel, the droplet size of vegetable oil is very large. (2) Compared with diesel fuel, rapeseed oil, palm oil, and their blend fuels offered lower smoke, lower NOx, ower engine noise, and high thermal efficiency in a D.I. diesel engine However, there were carbon deposit and piston ring sticking problems with long-term operation. (3) For ethanol-rapeseed oil blends, a 10-20% of ethanol content is recommended to enable lower BSHC and less smoke without a remarkable increase in engine noise compared with pure rapeseed oil. (4) A 10% oxygen content in the vegetable oils is contributed to reduced smoke emission.

  • PDF

중유 화염 연소로에서 LNG와 왕겨분말의 재연소 효과 비교 (The Comparison Study on Reburning Effects of LNG and Rice Husk in Heavy Oil Flamed Furnace)

  • 신명철;김세원;이창엽
    • 한국연소학회지
    • /
    • 제14권4호
    • /
    • pp.25-32
    • /
    • 2009
  • In commercial combustion systems, heavy oil is one of main hydrocarbon fuel because of its economical efficiency. Regarding heavy oil combustion, due to increasing concerns over environmental pollutants such as carbon monoxide, unburned hydrocarbon and nitrogen oxides, development of low pollutant emission methods has become an imminent issue for practical application to numerous combustion devices. Also a great amount of effort has been tried to developed effective methods for practical using of biomass. It is also an important issue to reduce carbon tax. In this paper, an experimental study has been conducted to evaluate the effect of biomass reburning on NOx formation in a heavy oil flamed combustion furnace. Experiments were performed in flames stabilized by a multi-staged burner, which was mounted at the front of the furnace. Experimental tests were conducted using air-carried rice husk powder and LNG as the reburn fuel and heavy oil as the main fuel. The paper reports data on flue gas emissions and temperature distribution in the furnace for several kinds of experimental conditions. NOx concentration in the exhaust has decreased considerably due to effect of reburning. The maximum NOx reduction rate was 62% when the rice husk was used by reburn fuel, however it was 59% when the LNG was used by reburn fuel. The result shows the positive possibility of biomass reburning system for optimal NOx reduction.

  • PDF