• 제목/요약/키워드: Carbon dioxide flux

검색결과 105건 처리시간 0.022초

수평관내 이산화탄소의 증발 열전달과 압력강하 (Evaporation Heat Transfer and Pressure Drop of Carbon Dioxide In a Horizontal Tube)

  • 손창효
    • 한국수소및신에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.189-196
    • /
    • 2007
  • The evaporation heat transfer coefficient and pressure drop of $CO_2$(R-744) in a horizontal tube was investigated experimentally. The main components of the experimental apparatus are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and an evaporator(test section). The test section consists of a horizontal stainless steel tube of 4.57 mm inner diameter. The experiments were conducted at mass flux of $200{\sim}1000\;kg/m^2s$ saturation temperature of $0{\sim}20^{\circ}C$, and heat flux of $10{\sim}40\;kW/m^2$. The test results showed that the heat transfer coefficient of $CO_2$ has a greater effect on nucleate boiling more than convective boiling. Mass flux of $CO_2$ does not affect nucleate boiling too much. In comparison with test data and existing correlations, All of the existing correlations for the heat transfer coefficient underestimated the experimental data. However lung et al.'s correlation showed a good agreement with the experimental data. The evaporation pressure drop of $CO_2$ increases with increasing mass flux and decreasing saturation temperature. When comparison between the experimental pressure drop and existing correlations. Existing correlations failed to predict the evaporation pressure drop of $CO_2$.

EXPERIMENTAL INVESTIGATIONS ON HEAT TRANSFER TO CO2 FLOWING UPWARD IN A NARROW ANNULUS AT SUPERCRITICAL PRESSURES

  • Kim, Hwan-Yeol;Kim, Hyung-Rae;Kang, Deog-Ji;Song, Jin-Ho;Bae, Yoon-Yeong
    • Nuclear Engineering and Technology
    • /
    • 제40권2호
    • /
    • pp.155-162
    • /
    • 2008
  • Heat transfer experiments in an annulus passage were performed using SPHINX(Supercritical Pressure Heat Transfer Investigation for NeXt Generation), which was constructed at KAERI(Korea Atomic Energy Research Institute), to investigate the heat transfer behaviors of supercritical $CO_{2}$. $CO_{2}$ was selected as the working fluid to utilize its low critical pressure and temperature when compared with water. The mass flux was in the range of 400 to 1200 $kg/m^{2}s$ and the heat flux was chosen at rates up to 150 $kW/m^{2}$. The selected pressures were 7.75 and 8.12 MPa. At lower mass fluxes, heat transfer deterioration occurs if the heat flux increases beyond a certain value. Comparison with the tube test results showed that the degree of heat transfer deterioration in the heat flux was smaller than that in the tube. In addition, the Nusselt number correlation for a normal heat transfer mode is presented.

수평관내 이산화탄소의 증발 열전달 특성 (Evaporative Heat Transfer Characteristics of Carbon Dioxide in a Horizontal Tube)

  • 손창효;이동건;김영률;오후규
    • 설비공학논문집
    • /
    • 제16권12호
    • /
    • pp.1134-1139
    • /
    • 2004
  • The evaporative heat transfer coefficient of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth, horizontal stainless steel tube of inner diameter of 7.75 mm. The experiments were conducted at mass flux of 200 to 500 kg/m$^2$s, saturation temperature of -5 to 5$^{\circ}C$, and heat flux of 10 to 40kW/m$^2$. The test results showed the heat transfer of $CO_2$ has a greater effect on nucleate boiling more than convective boiling. Mass flux of $CO_2$ does not affect nucleate boiling too much, and the effect of mass flux on evaporative heat transfer of $CO_2$ is much smaller than that of refrigerant R-22 and R-134a. In comparison with test results and existing correlations, correlations failed to predict the evaporative heat transfer coefficient of $CO_2$, therefore, it is necessary to develope reliable and accurate predictions determining the evaporative heat transfer coefficient of $CO_2$ in a horizontal tube.

Membrane contactor and Carbon Dioxide Separation

  • 이규호
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2002년도 제10회 하계 Workshop
    • /
    • pp.59-101
    • /
    • 2002
  • PVDF is good material for a hollow fiber membrane with high porosity and excellent hydrophobicity. Asymmetric PVDF hollow fiber membranes were prepared by the Loeb-Sourirajan phase inversion method. Asymmetric PVDF hollow fiber membranes could be controlled in pore size and porosity using various additives(LiCl, ZnCl$_2$) and internal coagulants (water, EtOH/water, and DMAc/water mixture). $CO_2$removal efficiency of asymmetric PVDF hollow fiber membranes was 1.2 times high than that of commercialized PP hollow fiber membranes at MEA 5wt% solution. $CO_2$flux of asymmetric PVDF hollow fiber membranes was 2.5 times higher than that of commercialized PP hollow fiber membranes. $CO_2$removal efficiency and absorption rate of asymmetric PVDF hollow fiber membranes were 30 times higher than those of packed column at absorbent $H_2O$. $CO_2$flux of asymmetric PVDF hollow fiber membranes at MEA 5wt% solution was 48 times higher than that of pure water. In the case of MEA 5wt% solution used as an absorbent, the $CO_2$absorption rate and removal efficiency of PVDF hollow fiber membrane were 2.3 times higher than that of a packed column.

  • PDF

CE-QUAL-W2를 이용한 성층 저수지에서 CO2의 시공간적 분포 및 물질수지 분석 (Characterizing Spatiotemporal Variations and Mass Balance of CO2 in a Stratified Reservoir using CE-QUAL-W2)

  • 박형석;정세웅
    • 한국물환경학회지
    • /
    • 제36권6호
    • /
    • pp.508-520
    • /
    • 2020
  • Dam reservoirs have been reported to contribute significantly to global carbon emissions, but unlike natural lakes, there is considerable uncertainty in calculating carbon emissions due to the complex of emission pathways. In particular, the method of calculating carbon dioxide (CO2) net atmospheric flux (NAF) based on a simple gas exchange theory from sporadic data has limitations in explaining the spatiotemporal variations in the CO2 flux in stratified reservoirs. This study was aimed to analyze the spatial and temporal CO2 distribution and mass balance in Daecheong Reservoir, located in the mid-latitude monsoon climate zone, by applying a two-dimensional hydrodynamic and water quality model (CE-QUAL-W2). Simulation results showed that the Daecheong Reservoir is a heterotrophic system in which CO2 is supersaturated as a whole and releases CO2 to the atmosphere. Spatially, CO2 emissions were greater in the lacustrine zone than in the riverine and transition zones. In terms of time, CO2 emissions changed dynamically according to the temporal stratification structure of the reservoir and temporal variations of algae biomass. CO2 emissions were greater at night than during the day and were seasonally greatest in winter. The CO2 NAF calculated by the CE-QUAL-W2 model and the gas exchange theory showed a similar range, but there was a difference in the point of occurrence of the peak value. The findings provide useful information to improve the quantification of CO2 emissions from reservoirs. In order to reduce the uncertainty in the estimation of reservoir carbon emissions, more precise monitoring in time and space is required.

김제 벼-보리 이모작 논에서 벼 재배기간동안의 CO2 및 에너지 플럭스의 계절적 변화 (Seasonal Variation of Carbon Dioxide and Energy Fluxes During the Rice Cropping Season at Rice-barley Double Cropping Paddy Field of Gimje)

  • 민성현;심교문;김용석;정명표;김석철;소규호
    • 한국농림기상학회지
    • /
    • 제15권4호
    • /
    • pp.273-281
    • /
    • 2013
  • 본 연구는 전라북도 김제시 부량면 신용리의 벼-보리 이모작 논에 설치된 플럭스 관측시스템에서 2012년 벼 재배기간동안(6월 9일~10월 20일)에 연속적으로 관측된 플럭스자료를 활용하여, 논 생태계와 대기간의 $CO_2$ 및 에너지(현열, 잠열) 교환량의 계절적 변화를 분석하였다. $CO_2$ 및 에너지의 교환량은 미기상학적인 에디공분산법으로 추정하였고, 환경인자(순복사, 강수량 등)와 작물체 생육량(엽면적지수, 초장 등)도 함께 측정 조사하였다. 관측된 플럭스자료는 보정과 결측보충의 과정을 거친 후 분석에 활용되었다. 결론적으로, 벼-보리 이모작 논 생태계에서 벼 재배기간동안의 $CO_2$의 순생태계교환량(NEE)과 총일차생산량(GPP) 및 생태적호흡량(Re)은 각각 단위면적($m^2$)당 -277.1, 710.3, 433.2g C로 분석되었다.

수평관내 이산화탄소의 증발 압력강하 (Evaporation pressure drop of $CO_2$ in a horizontal tube)

  • 이동건;손창효;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권5호
    • /
    • pp.552-559
    • /
    • 2005
  • The evaporation pressure drop of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth. horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500\;kg/m^{2}s$, saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$. and heat flux of 10 to $40\;kW/m^2$. The test results showed the evaporation pressure drop of $CO_2$ are highly dependent on the vapor qualify, heat flux and saturation temperature. The evaporation pressure drop of $CO_2$ is very lower than that of R-22. In comparison with test results and existing correlations. the best fit of the present experimental data is obtained with the correlation of Choi et al. But existing correlations failed to predict the evaporation pressure drop of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation pressure drop of $CO_2$ in a horizontal tube.

수평관과 헬리컬 코일관내 이산화탄소의 냉각 열전달 특성 (Cooling Heat Transfer Characteristics of Carbon Dioxide in a Horizontal and Helically Coiled Tube)

  • 손창효
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.121-126
    • /
    • 2008
  • The cooling heat transfer coefficient of $CO_2$ (R-744) in a horizontal and helically coiled tube was investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater, evaporator and gas cooler (test section). The test section consists of a horizontal stainless steel tube and hellically coiled copper tube of 4.57 and 7.75 mm. The experiments were conducted at saturation temperature of 100 to $20^{\circ}C$, and mass flux of 200 to $500kg/m^2s$. The test results showed the variation of the heat transfer coefficient tended to decrease as cooling pressure of $CO_2$ increased. The heat transfer coefficient with respect to mass flux increased as mass flux increased. The experimental results were also compared with the existing correlations for the supercritical heat transfer coefficient, which generally underpredicted the measured data. However, the experimental data showed a relatively good agreement with the correlations of Pitla et al. except for the pseudo critical temperature.

수평관내의 $CO_2$의 증발 열전달에 관한 연구 (Study on the Evaporation Heat transfer of $CO_2$ in a Horizontal tube)

  • 장승일;최선묵;김대희;오후규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.240-241
    • /
    • 2005
  • The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator(test section). The test section was made of a horizontal stainless steel tube with the inner diameter of 4.57 mm, and length of 4 m. The experiments were conducted at mass flux of 200 to 700 kg/$m^2s$, saturation temperature of 0$^{circ}C$ to 20$^{circ}C$, and heat flux of 10 to 30 kW/$m^2$. The test results showed the evaporation heat transfer of $CO_2$ has great effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality, heat flux and saturation temperature. In comparison with test results and existing correlations, correlations failed to predict the evaporation heat transfer coefficient of $CO_2$, therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

  • PDF

마이크로핀관 내 $CO_2$의 증발 열전달과 오일 영향에 관한 실험적 연구 (Experimental Study on Evaporation Heat Transfer and Oil Effect in Micro-fin Tube Using $CO_2$)

  • 이상재;최준영;이재헌;권영철
    • 설비공학논문집
    • /
    • 제20권2호
    • /
    • pp.106-112
    • /
    • 2008
  • In this paper, the experimental results on evaporation heat transfer characteristics were reported for a micro-fin tube using $CO_2$. An experimental refrigerant loop had been established to measure the evaporation heat transfer coefficient and pressure drop of $CO_2$. Experiments were conducted for mass fluxes, heat fluxes, saturation temperatures and PAG oil concentrations. With increasing the heat flux and the saturation temperature, the evaporation heat transfer coefficient increased. At the higher mass flux, however, the exit vapor quality of the micro-fin tube was to be lower. The peak of the heat transfer coefficient was shifted toward low quality region. The evaporation pressure drop increased as the mass flux increased and the saturation temperature decreased. As PAG oil concentration increased, the evaporation heat transfer coefficient decreased and the dryout was delayed by oil addition.