• Title/Summary/Keyword: Carbon density

Search Result 1,816, Processing Time 0.028 seconds

MREIT of Postmortem Swine Legs using Carbon-hydrogel Electrodes

  • Minhas, Atul S.;Jeong, Woo-Chul;Kim, Young-Tae;Kim, Hyung-Joong;Lee, Tae-Hwi;Woo, Eung-Je
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.6
    • /
    • pp.436-442
    • /
    • 2008
  • Magnetic resonance electrical impedance tomography(MREIT) has been suggested to produce cross-sectional conductivity images of an electrically conducting object such as the human body. In most previous studies, recessed electrodes have been used to inject imaging currents into the object. An MRI scanner was used to capture induced magnetic flux density data inside the object and a conductivity image reconstruction algorithm was applied to the data. This paper reports the performance of a thin and flexible carbon-hydrogel electrode that replaces the bulky and rigid recessed electrode in previous studies. The new carbon-hydrogel electrode produces a negligible amount of artifacts in MR and conductivity images and significantly simplifies the experimental procedure. We can fabricate the electrode in different shapes and sizes. Adding a layer of conductive adhesive, we can easily attach the electrode on an irregular surface with an excellent contact. Using a pair of carbon-hydrogel electrodes with a large contact area, we may inject an imaging current with increased amplitude primarily due to a reduced average current density underneath the electrodes. Before we apply the new electrode to a human subject, we evaluated its performance by conducting MREIT imaging experiments of five swine legs. Reconstructed conductivity images of the swine legs show a good contrast among different muscles and bones. We suggest a future study of human experiments using the carbon-hydrogel electrode following the guideline proposed in this paper.

Removal of Phenol Loaded with Activated Carbon by Potentiostatic Method (정전위전해에 의한 활성탄에 함유된 페놀 제거)

  • 김성우;박승조
    • Resources Recycling
    • /
    • v.10 no.4
    • /
    • pp.18-23
    • /
    • 2001
  • Air pollutants, phenol was generated in case of thermal regeneration of used activated carbon loaded with phenol and because of this problem, removal process of phenol were studied. Electrolytic oxidation of samples, used S.company granular activated carbon (WS-GAC), used C.company granular activated carbon (WC-GAC) and used L.company granular activated carbon (WL-GAC) loaded with phenol carried out by potentiostatic method in this study. In case of experiment was to come into operation in condition of samples containing 100 mg/g phenol, supporting electrolyte was 1.0% sodium chloride solution, Ti-Ir (10$\times$10$\textrm{cm}^2$) electrode and electrode distance was 2 cm, current density was $1.25 A/dm^2$, Obtained from the results of electrolytic oxidation experiments were not detected residual phenol. And then we knew about reaction time of electrolytic oxidation, current density, concentration of supporting electrolyte and electrode and electrode distance were 60 minutes, 1.25 A/dm$^2$, 1.0%, 2 cm.

  • PDF

Estimation of Carbon Storage Using Mean Biomass Density in Korean Forests

  • Li, Xiaodong;Yi, Myong-Jong;Jeong, Mi-Jeong;Son, Yo-Whan;Jin, Guangze;Han, Sang-Sub
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.5
    • /
    • pp.673-681
    • /
    • 2010
  • This study examined the biomass data estimated from different allometric models and calculated the mean aboveground biomass, mean belowground biomass and root/shoot ratio values according to the forest types and age classes. These mean values and the forest inventories in 2009 were used to estimate the aboveground and total biomass carbon storage in different forest types (coniferous, deciduous and mixed forests). The aboveground and total biomass carbon storage for all forest types in Korea were 350.201 Tg C and 436.724 Tg C. Over the past 36 years, plantations by reforestation programs have accounted for more than 70% of the observed carbon storage. The carbon storage in Korean forest biomass was 436.724 Tg C, of which 175.154 Tg C for coniferous forests, 126.772 Tg C for deciduous forests and 134.518 Tg C for mixed forests, comprising approximately 1/20 of the total carbon storage of the East Asian countries. The total carbon storage for the whole forest sector in Korea was 1213.122 Tg C, of which 436.724 Tg C is stored in forest biomass if using the ratio of carbon storage in different pools examined from the United States. Such large carbon storage in Korean forests is due mainly to active plantations growth and management practices.

The analysis on the possibility of applying carbon board pattern design using the woodcut technique to Interior decorating materials (목판화 기법을 활용한 carbon board용 pattern design과 interior 장식재로서의 적용 가능성 분석)

  • Kim, Eun-Ju
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • Carbon board, an electromagnetic shielding new material, is expected to be applied to the art wall by combining draft designs. When environment-friendly architecture materials are used as an interior wall, they are suitable as finishing materials. According to the increasing tendency of the application of carbon board, various styles could be made by decorating the whole or a part of a wall with tiles with module structure or by patterning the wall with panel-type woodcut or pictures or sculpture. And more graphic design based on diverse variation, and reconstruction and combination between other motif is being on the rise as a new expression. In this paper, make it possible to applying in MDF board and carbon board pattern design using the woodcut technique. The structural and physical properties were compared by usability of abrasion, toughness, stability. Samples are analyzed dependent on the hardness and relative density, change of detail pattern design and trimming technique. These results have shown that the possibility of applying of carbon board can be a high rank interior materials, capable of creating value of the living system, connects with MDF board, also can express humanism in a beautiful manner.

Comparative Evaluation between Administrative and Watershed Boundary in Carbon Sequestration Monitoring - Towards UN-REDD for Mt. Geum-gang of North Korea - (탄소 저장량 감시에서 배수구역과 행정구역의 비교 평가 - 금강산에 대한 UN-REDD 대응 차원에서 -)

  • Kim, Jun-Woo;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.5
    • /
    • pp.439-454
    • /
    • 2013
  • UN-REDD (United Nations programme on Reducing Emissions from Deforestation and forest Degradation) is currently being emerged as one of important mechanism to reduce carbon dioxide in relation to the deforestation. Although administrative boundary has already gained world-wide recognition as a typical method of monitoring unit in the process of GHG (Greenhouse Gas) reduction project, this approach did not provide a realistic evidence in the carbon sequestering monitoring in terms of UN-REDD; the meaningful comparison of land use patterns among watershed boundaries, interpretation for distribution trends of carbon density, calculation of opportunity cost, leakage management, etc. This research proposes a comparative evaluation framework in a more objective and quantitative way for carbon sequestering monitoring between administrative and watershed boundary approaches. Mt. Geumgang of North Korea was selected as a survey objective and an exhaustive and realistic comparison of carbon sequestration between the two approaches was conducted, based on change detection using TM satellite images. It was possible for drainage boundary approach to identify more detailed area-wide patterns of carbon distribution than traditional administrative one, such as estimations of state and trends, including historical trends, of land use / land cover and carbon density in the Mt. Geumgang. The distinctive changing trends in terms of carbon sequestration were specifically identified over the watershed boundary from 4.0% to 34.8% while less than 1% difference was observed in the administrative boundaries, which were resulting in almost 21-22%. It is anticipated that this research output could be used as a valuable reference to support more scientific and objective decision-making in introducing watershed boundary as carbon sequestering monitoring unit.

Effect of Coal Tar Pitch Viscosity on Impregnation for Manufacture of Carbon Blocks with High Density (고밀도화 탄소 블록 제조 시 콜타르계 피치의 점도가 함침에 미치는 영향)

  • Cho, Jong Hoon;Hwang, Hye In;Kim, Ji Hong;Lee, Young-Seak;Im, Ji Sun;Kang, Seok Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.5
    • /
    • pp.569-573
    • /
    • 2021
  • In this study, high-density carbon blocks were manufactured using coke, binder pitch, and impregnated pitch, then the effect of pitch fluidity on the densification of carbon blocks during the impregnation process was investigated. A green block was manufactured through high-pressure figuration of coke and binder pitch, and a carbon block was obtained through a heat treatment process. An impregnation process was performed to remove pores generated by volatilization of the binder pitch during the heat treatment process. The impregnation process was carried out the high-pressure reaction step of impregnating the pitch into the carbon block followed by the pretreatment step of melting the impregnation pitch. Melting of the impregnation pitch was carried out at 140~200 ℃, and the viscosity of the impregnation pitch decreased as the heat treatment temperature increased. The decrease in the viscosity of the impregnation pitch improved the fluidity and effectively impregnated the pores inside the carbon block, reducing the porosity of the carbon block by 83% and increasing the apparent density by 5%.

High Cell Density Culture of Micro-algal Dunaliella bardawil (미세조류 Dunaliella bardawil의 고농도 세포배양)

  • 정욱진;왕만식;최승인;정병철;김주곤
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.160-166
    • /
    • 1999
  • High cell density cultivation of microalga Dunaliella bardawil using nitrogen fed-batch cultures was studied in batch flask. Optimum environmental conditions include concentrated nutrients except NaCl and carbon sources, carbon sources, pH, light, agitation, nitrate and phosphate ions. Cell growth, consumption rates of nitrate and phosphate ions were monitored. Optimal conditions for higher cell density were found to be(in the range tested): 5 times concentrated media(1 times-10 times concentrated media) pH 8.0 (7.0-9.0) white light(blue and red light) 15mM of nitrate (0.94-15mM) 250mM $NaHCO_3$ and $CO_2$ gas. However, the addition of phosphate ions did not enhance the algal maximum cell density and specific growth rate. Nitrate was found to be effective for the cell growth. The maximum cell density of fed-batch culture using nitrate ions in $8.955{\times}106$cells/ml after 189hr incubation.

  • PDF

Theoretical study on electrical behavior of carbon chain inserted single-walled carbon nanotubes compared with Pt doped one

  • Cui, Hao;Zhang, Xiaoxing;Xiao, Hanyan;Tang, Ju
    • Carbon letters
    • /
    • v.25
    • /
    • pp.55-59
    • /
    • 2018
  • Carbon chain inserted carbon nanotubes (CNTs) have been experimentally proven having undergone pronounced property change in terms of electrical conductivity compared with pure CNTs. This paper simulates the geometry of carbon chain inserted CNTs and analyzes the mechanism for conductivity change after insertion of carbon chain. The geometric simulation of Pt doped CNT was also implemented for comparison with the inserted one. The results indicate that both modification by Pt atom on the surface of CNT and addition of carbon chain in the channel of the tube are effective methods for transforming the electrical properties of the CNT, leading to the redistribution of electron and thereby causing the conductivity change in obtained configurations. All the calculations were obtained based on density functional theory method.

Mechanical Properties of Carbon/Carbon Composites Densified by HIP Technique

  • Manocha, L.M.;Warrier, Ashish;Manocha, S.;Banerji, S.;Sathiyamoorthy, D.
    • Carbon letters
    • /
    • v.6 no.1
    • /
    • pp.6-14
    • /
    • 2005
  • The study of mechanical properties and fracture behaviour of carbon/carbon composites is significant to its application and development. These are dependent on microstructure and properties of reinforcing fibers and matrix, fiber/matrix interface and porosity/cracks present in the composites. In the present studies high-density carbon/carbon composites have been prepared using PAN and various pitch based carbon fibers as reinforcements and pitch as matrix with repeated densification cycles using high-pressure impregnation and carbonization technique. Scanning electron microscopy has been used to study the fracture behaviour of the highly dense composites and correlated with structure of the composites. The geometry of reinforcement and presence of unfilled voids/cracks was found to influence the path of crack propagation and thereby the strength of composites. The type of stresses (tensile or compressive) accumulated also plays an important role in fracture of composites.

  • PDF

Bias-enhanced Nucleation of Diamond in Hot Filament CVD (열필라멘트 CVD에서 전압 인가에 의한 다이아몬드의 핵생성 촉진)

  • Choi, Kyoon;Kang, Suk-Joong L.;Hwang, Nong-M.
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.6
    • /
    • pp.636-644
    • /
    • 1997
  • The effect of various processing parameters, in particular the substrate and filament temperature, on the nucleation of diamond has been studied for the hot filament CVD process with a negative bias on the substrate. As far as the substrate temperature was maintained around the critical temperature of 73$0^{\circ}C$, the nucleation of diamond increased with increasing filament temperature. The maximum nucleation density of ~ 2$\times$109/$\textrm{cm}^2$ was obtained under the condition of filament temperature of 230$0^{\circ}C$, substrate temperature of 75$0^{\circ}C$, bias voltage of 300V, methane concentration of 20%, and deposition time of 2 hours. This nucleation density is about the same as those obtained in previous investigations. For fixed substrate temperatures, the nucleation density varies up to about 103 times depending on experimental conditions. This result is different from that of Reinke, et al. When the substrate temperature was above 80$0^{\circ}C$, a silkworm~shaped carbon phase was co-deposited with hemispherical microcrystalline diamond, and its amount increased with increasing substrate temperature. The Raman spectrum of the silkworm-shaped carbon was the same as that of graphitic soot. The silkworm-shaped carbon was etched and disappeared under the same as that of graphitic soot. The silkworm-shaped carbon was etched and disappeared under the deposition condition of diamond, implying that it did not affect the nucleation of diamond.

  • PDF