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Abstract : This study examined the biomass data estimated from different allometric models and calculated

the mean aboveground biomass, mean belowground biomass and root/shoot ratio values according to the

forest types and age classes. These mean values and the forest inventories in 2009 were used to estimate

the aboveground and total biomass carbon storage in different forest types (coniferous, deciduous and

mixed forests). The aboveground and total biomass carbon storage for all forest types in Korea were

350.201 Tg C and 436.724 Tg C. Over the past 36 years, plantations by reforestation programs have

accounted for more than 70% of the observed carbon storage. The carbon storage in Korean forest biomass

was 436.724 Tg C, of which 175.154 Tg C for coniferous forests, 126.772 Tg C for deciduous forests and

134.518 Tg C for mixed forests, comprising approximately 1/20 of the total carbon storage of the East

Asian countries. The total carbon storage for the whole forest sector in Korea was 1213.122 Tg C, of which

436.724 Tg C is stored in forest biomass if using the ratio of carbon storage in different pools examined

from the United States. Such large carbon storage in Korean forests is due mainly to active plantations

growth and management practices. 
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Introduction

Recent studies have shown that the mid- and high-lat-

itude forests in the Northern Hemisphere are significant

sinks for sequestrating atmospheric CO
2
 (e.g. Choi et al.,

2002; Janssens et al., 2003; Nabuurs et al., 2003; Fang

et al., 2001, 2005). However, the regional magnitude,

spatial pattern and causes of carbon sources and sinks

remain uncertain (Goodale et al., 2002; Liski et al., 2003;

Houghton 2005; Fang et al., 2006). With the increasing

scientific and political interest in regional aspects of the

global carbon cycle, there is a strong impetus to better

understand carbon storage in Korean forests. This is not

only because the Republic of Korea (henceforth referred

to as Korea) as a member is seeking to implement its

commitments under the United Nations Framework Con-

vention on Climate Change (UNFCCC) through nationwide

reforestation to increase the level of carbon storage in its

forest ecosystems, but also because it has experienced

intensive land change histories during the first half of

last century.

Korea is comprised of 16 regions, 7 metropolitan cities

(Soeul, Busan, Daegu, Incheon, Gwanju, Daejeon and Ulsan)

and 9 provinces (Gyeonggi-do, Gangwon-do, Chungcheong-

buk-do, Chungcheongnam-do, Jeollabuk-do, Jeollanam-

do, Gyeongsangbuk-do, Gyeongsangnam-do and Jejudo),

and has a unique climate that can allow more than three

fifths of its land area to be covered with forest (Shin,

2002). Approximately 42% of forestland is coniferous forest,

26% is deciduous forest, 29.1% is mixed forest, and the

remaining 2.9% are bamboo forest and non-wooded land

(Statistical Yearbook of Forestry, 2009). Although sporadic

government efforts at reforestation had begun in the

1960s, the Korean government initiated three ten-year

national reforestation programs in 1973 to protect water,

soil and biological resources and rehabilitate Korea’s

denuded landscape (Choi et al., 2002; Tak et al., 2007).

In the meantime, forest ecologists developed series of

allometric models to estimate the biomass and productivity

in many forest types of Korea, with a large accumulation

of field survey data. These field surveys and the latest

forest inventories are complementary data sources for

estimating the level of carbon storage in Korean forests.
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However, there are few reports of this type of study.

The aim of this study were to (1) estimate the biomass

carbon storage in Korean forests using the mean

aboveground biomass, mean belowground biomass and

root/shoot ratio values based on field surveys and forest

inventories, and (2) identify the regional carbon magnitude

and distribution in forest biomass of each forest type.

Data and Methods

Two data sources were used in this study, namely

forest inventory data and field survey data.

1. Forest inventory data

Forest is defined as land with 30% or more crown

cover in government-, community- and privately-owned

forests. The forest inventory data provides detailed infor-

mation on the total area, age, site quality for each forest

type (coniferous, deciduous and mixed forests) at a regional

level (Statistical Yearbook of Forestry, 2009). Within

each region, each forest type was stratified into three site

classes (low, medium and high quality). Each site was

subdivided into five age classes from II to VI (younger

than 20 years old for II, 30 years old for III, 40 years old

for IV, 50 years for V and over 50 years old for VI). The

total area of each forest type was given by the age

classes for each region. 

2. Field survey data

This study examined the data from publications over

the past 40 years on allometric models according to the

tree species and also compiled data on biomass accord-

ing to the forest type in Korea. Most studies focused on

the major dominate species and developed allometric

equations for the aboveground components such as stem,

foliage and branches. Only few studies reported the

belowground portion (root) (Table 1). The major dominate

species for coniferous forests are Pinus densiflora (55%),

P. rigida (15.2%), P. koraiensis (8.6%), and Larix leptolepsis

(17.2%), whereas the major dominate species for deciduous

forests are Qercus species, particularly Q. Mongolica, Q.

acutissima, Q. variabilis, Q. serrata, and Q. dentate

(Statistical Yearbook of Forestry, 2009). This study assumed

that the major coniferous species represents all coniferous

trees, Quercus species represents all deciduous trees, and

that those coniferous species and Quercus species are

representative of mixed forests because Pinus and Quercus

species account for more than two-thirds of all coniferous

and deciduous trees in Korea (Choi et al., 2002; Tak et

al., 2007). It should be noted that not all original studies

measured both the above- and below-ground biomass for

the dominate tree species, and only few studies reported

the forest floor mass, dead wood biomass and soil

carbon content. The mean aboveground biomass, mean

belowground biomass and root/shoot ratio values accord-

ing to the forest types and age classes were then

calculated (Table 2).

2. Estimation of forest biomass

The aboveground or total biomass (Y) for each forest

type was calculated using Eq. (1):

(1)

Where, Defg and Aefg are the aboveground or total mean

biomass density (Mg ha−1) and total area for each age

class (g = 1, 2, 3, 4, 5), site class (f = 1, 2, 3), and region

(e = 1, 2, 3, …, 16) (Statistical Yearbook of Forestry, 2009),

and R is the ratio of root to shoot.

The biomass in bamboo forests was also analyzed, and

the total biomass was estimated from the average values

based on few case studies. The mean biomass density

(including culms, branch, leave, rhizome and root) for the

different bamboo species (Phyllostachys pubescens, P. bam-

busoides, P. nigra var. henonis) ranged from 36.8 to 103.6

Mg ha−1 (Park and Ryu, 1996; Hwang et al., 2005), with a

mean biomass density of 79.4 Mg ha−1. The biomass of

bamboo forests in each region was calculated by multiply-

ing the mean biomass density by total area in the region.

Results

Table 1 lists the allometric models for the major dominate

species in Korean forests. The commonly used models

for estimating the biomass of different trees are W = a(DBH)b

or LogW = a+bLog(DBH) and W = a(DBH2H)b or Log W =

a+bLog(DBH2H). Given that biomass growth is strongly

related to the trunk diameter and height, the allometric

model as a nondestructive method is useful for estimating

the entire or partial weight of a tree from the measurable

tree dimensions including diameter at breast height (DBH) or

DBH and height together (Lee, 2004; Lee et al., 2004).

However, this allometric relationship varies according to

the specific site and species (Table 1).

The biomass data from publications was analyzed, and

the mean aboveground biomass, mean belowground biomass

and root/shoot ratio values were calculated for each age

class (from II to VI) of different forest types (Table 2).

In general, the mean aboveground biomass for all forest

types increased significantly with age class, while the

mean belowground biomass increased slightly with age

class. The root/shoot ratio values fluctuated significantly

between 0.180 and 0.344 for deciduous forests compared

to that for coniferous and mixed forests, partly because

of a small number of published data sources for age

class II of deciduous forests.
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Because the forest inventories recorded detailed infor-

mation on the total area and age class for each forest

type according to the region, the regional aboveground

and total biomass carbon storage were estimated for

each age class of different forest types using equation (1)

and the mean values in Table 2. Tables 3 and 4 summarize

the regional aboveground and total biomass carbon stocks.

The distributions of the aboveground and total biomass

carbon storage for all forest types showed regional

differences. Gangwon-do and Gyeongsangbuk-do provinces

markedly occupied greater aboveground (77.211 Tg C

and 70.367 Tg C) and total biomass carbon storage

(95.721 Tg C and 87.856 Tg C) for all forest types than

the other regions, whereas Seoul city possessed the

smallest aboveground and total biomass carbon storage

(0.914 Tg C and 1.134 Tg C) of all forest types of all

regions, mainly because Seoul city is primarily an

industrial and urban hub holding the highest population

density in Korea (Tak et al., 2007). The aboveground

and total biomass carbon storage of age classes III and

IV for each region had higher values than those of the

other age classes and also varied within each region.

Summing the aboveground and total biomass carbon

storage of age classes III and IV for all regions, the ratios of

the aboveground and total biomass carbon storage to the

corresponding national biomass carbon storage were

74.4% and 74.9%. In other words, age classes III and IV

made major contributions to carbon sequestration by

Korean forests, which is also in accordance with the

statistical documents. Statistical Yearbook of Forestry

(2009) demonstrated that the ratios of the total area and

total stem volume of age classes III and IV to that of all

age classes were 67.2% and 71.4%. 

Discussion

The aboveground and total biomass carbon storage for

all forest types of Korea were 350.201 Tg C and 436.724 Tg

C in 2009 (Table 5). Such large carbon storage in Korean

forests is due mainly to the contribution of active plantation

growth and management practices. Over the past four

decades, plantations by nationwide reforestation have

accounted for more than 70% of the observed carbon

storage (261.698 Tg C for the aboveground biomass and

327.085 Tg C for the total biomass of age classes III and

IV). Choi et al. (2002) estimated a carbon content of 200

Tg C in the total Korean forest biomass during the period

1973-2000 and reported an annual uptake rate of 12 Tg C

yr−1 in the late 1990s after the 30-year forest restoration

programs. If this annual uptake rate is used to estimate the

carbon changes in Korean forests since 2000 while the

forest growth rates vary within different periods, the

estimated value of 320 Tg C in 2009 was still lower than

the present result (436.724 Tg C). The discrepancy between

values might result from the different methods used. For

example, Choi et al. (2002) used the biomass expansion

factor method to estimate the carbon content in the total

Korean forest biomass based on the stem volume data.

The land-based Global Forest Resources Assessment

2005 (FRA2005), released by the UN Food and Agri-

culture Organization (FAO 2006) who has been coordi-

nating global forest resources assessments every five to

ten years since 1946, provides available information on

the forest biomass carbon storage of Democratic Peo-

Table 2. Mean aboveground biomass densities (Mg ha−1), mean belowground biomass densities and root/shoot ratio values
for the different forest types in the different age classes based on the publications in Korea (n: data numbers, SD:
standard deviation).

Age 
classa

Coniferous forests Deciduous forests Mixed forests

Above-
ground

Below-
ground

R
Above-
ground

Below-
ground

R
Above-
ground

Below-
ground

R

II
46.221
(n = 11,

SD = 19.583)

12.484
(n = 9,

SD = 6.418)

0.264
(n = 9,

SD = 0.078)

52.500
(n = 2,

SD = 19.091)

22.700
(n = 1)

0.344
(n = 1)

47.187
(n = 13,

SD = 18.855)

13.506
(n = 10,

SD = 6.859)

0.272
(n = 10,

SD = 0.077)

III
116.340
(n = 11,

SD = 48.444)

40.206
(n = 5,

SD = 21.911)

0.279
(n = 5,

SD = 0.063)

113.880
(n = 9,

SD = 65.836)

29.408
(n = 6,

SD = 8.498)

0.202
(n = 6,

SD = 0.055)

115.230
(n = 20,

SD = 55.333)

34.316
(n = 11,

SD = 16.121)

0.229
(n = 11,

SD = 0.067)

IV
145.620
(n = 16,

SD = 64.549)

33.303
(n = 10,

SD = 20.715)

0.246
(n = 10,

SD = 0.084)

136.49
(n = 23,

SD = 84.580)

36.999
(n = 15,

SD = 13.840)

0.253
(n = 15,

SD = 0.073)

136.120
(n = 41,

SD = 76.515)

34.901
(n = 27,

SD = 16.119)

0.267
(n = 27,

SD = 0.096)

V
137.310
(n = 8,

SD = 62.386)

37.784
(n = 7,

SD = 20.732)

0.265
(n = 7,

SD = 0.069)

178.270
(n = 8,

SD = 70.474)

36.449
(n = 5,

SD = 4.154)

0.175
(n = 5,

SD = 0.029)

157.790
(n = 16,

SD = 67.686)

37.228
(n = 12,

SD = 15.531)

0.227
(n = 12,

SD = 0.071)

VI
185.710
(n = 4,

SD = 97.873)

42.693
(n = 2,

SD = 12.959)

0.306
(n = 2,

SD = 0.063)

204.750
(n = 14,

SD = 88.019)

41.291
(n = 10,

SD = 8.551)

0.180
(n = 10,

SD = 0.024)

193.610
(n = 17,

SD = 85.145)

41.525
(n = 12,

SD = 8.683)

0.201
(n = 12,

SD = 0.057)

aAge class means that the forest ages are younger than 20 years old for class II, 30 years old for class III, 40 years old for class IV, 50
years for class V and over 50 years old for class VI.
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Table 3. Regional distribution of aboveground biomass carbon storage (Tg C) for the different forest types in the different
age classes in Korea.

Region Forest type
Age classa

All II III IV V VI

Seoul

Coniferous 0.086 0.002 0.060 0.015 0.007 0.001

Deciduous 0.524 0.001 0.082 0.368 0.055 0.018

Mixed 0.304 0.002 0.084 0.165 0.036 0.017

Busan

Coniferous 0.953 0.031 0.234 0.671 0.015 0.002

Deciduous 0.450 0.008 0.068 0.340 0.029 0.005

Mixed 0.847 0.009 0.172 0.642 0.023 0.001

Daegu

Coniferous 0.859 0.251 0.478 0.108 0.023 0.000

Deciduous 0.320 0.042 0.123 0.119 0.027 0.009

Mixed 1.251 0.086 0.559 0.549 0.037 0.021

Incheon

Coniferous 0.459 0.023 0.266 0.151 0.018 0.001

Deciduous 0.915 0.027 0.544 0.312 0.030 0.002

Mixed 0.878 0.022 0.391 0.442 0.023 0.000

Gwangju

Coniferous 0.802 0.036 0.231 0.525 0.010 0.000

Deciduous 0.193 0.008 0.018 0.125 0.039 0.003

Mixed 0.231 0.003 0.039 0.167 0.016 0.005

Daejeon

Coniferous 0.824 0.070 0.534 0.217 0.004 0.000

Deciduous 0.497 0.025 0.305 0.153 0.011 0.002

Mixed 0.321 0.022 0.204 0.095 0.000 0.000

Ulsan

Coniferous 1.367 0.107 0.791 0.449 0.012 0.009

Deciduous 1.282 0.020 0.515 0.673 0.027 0.047

Mixed 1.276 0.016 0.904 0.345 0.007 0.005

Gyeonggi-do

Coniferous 10.516 1.098 4.487 3.727 0.897 0.307

Deciduous 11.961 0.445 2.997 6.002 2.082 0.434

Mixed 7.911 0.241 3.898 3.361 0.370 0.041

Gangwon-do

Coniferous 22.597 4.661 7.502 6.652 2.937 0.846

Deciduous 29.626 2.781 6.589 7.857 8.482 3.918

Mixed 24.988 1.341 6.753 8.827 6.110 1.957

Chungcheong
buk-do

Coniferous 12.016 1.644 5.287 4.181 0.700 0.205

Deciduous 8.079 0.343 2.330 3.272 1.883 0.251

Mixed 7.203 0.342 3.128 2.770 0.833 0.130

Chungcheong
nam-do

Coniferous 11.024 0.966 5.336 4.396 0.276 0.049

Deciduous 6.754 0.653 2.386 2.295 1.345 0.075

Mixed 6.297 0.361 2.740 2.552 0.626 0.018

Jeollabuk-do

Coniferous 11.025 0.973 4.190 5.447 0.340 0.075

Deciduous 9.553 0.600 2.549 3.764 1.514 1.126

Mixed 5.240 0.277 2.447 2.225 0.167 0.124

Jeollanam-do

Coniferous 19.875 3.047 8.419 7.826 0.510 0.073

Deciduous 7.171 0.910 2.240 2.574 0.607 0.839

Mixed 8.280 0.531 4.110 3.429 0.167 0.043

Gyeongsang
buk-do

Coniferous 27.059 4.985 12.422 7.009 2.154 0.490

Deciduous 14.875 0.920 4.750 5.832 3.024 0.349

Mixed 28.433 2.283 16.357 8.287 1.437 0.068

Gyeongsang
nam-do

Coniferous 17.430 1.359 9.580 5.921 0.390 0.180

Deciduous 9.096 0.711 2.191 3.382 1.978 0.834

Mixed 13.998 0.513 7.111 5.182 0.650 0.542

Jejudo

Coniferous 1.554 0.065 0.421 0.558 0.219 0.291

Deciduous 2.342 0.078 0.265 0.339 0.719 0.941

Mixed 0.659 0.070 0.126 0.186 0.117 0.160

Total 350.201 33.007 137.214 124.484 40.981 14.514

aAge class means that the forest ages are younger than 20 years old for class II, 30 years old for class III, 40 years old for class IV, 50
years for class V and over 50 years old for class VI. A factor of 0.5 was used to convert carbon content from biomass.
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Table 4. Regional distribution of total biomass carbon storage (Tg C) for the different forest types in the different age
classes in Korea.

Region Forest type
Age classa

All II III IV V VI

Seoul

Coniferous 0.109 0.003 0.076 0.018 0.009 0.002

Deciduous 0.646 0.001 0.099 0.461 0.064 0.021

Mixed 0.379 0.002 0.103 0.209 0.044 0.020

Busan

Coniferous 1.196 0.039 0.299 0.836 0.019 0.003

Deciduous 0.559 0.011 0.082 0.426 0.034 0.006

Mixed 1.066 0.011 0.212 0.813 0.028 0.002

Daegu

Coniferous 1.091 0.317 0.611 0.134 0.029 0.000

Deciduous 0.396 0.056 0.148 0.149 0.032 0.011

Mixed 1.561 0.109 0.687 0.695 0.045 0.025

Incheon

Coniferous 0.582 0.029 0.341 0.189 0.022 0.001

Deciduous 1.119 0.036 0.654 0.391 0.036 0.002

Mixed 1.097 0.028 0.481 0.560 0.028 0.000

Gwangju

Coniferous 1.008 0.045 0.296 0.654 0.013 0.000

Deciduous 0.239 0.011 0.021 0.157 0.046 0.004

Mixed 0.290 0.004 0.048 0.211 0.020 0.007

Daejeon

Coniferous 1.046 0.088 0.683 0.270 0.004 0.000

Deciduous 0.608 0.034 0.367 0.192 0.013 0.002

Mixed 0.398 0.028 0.250 0.120 0.000 0.000

Ulsan

Coniferous 1.733 0.135 1.012 0.559 0.015 0.011

Deciduous 1.577 0.027 0.619 0.844 0.032 0.055

Mixed 1.582 0.020 1.111 0.438 0.008 0.006

Gyeonggi-do

Coniferous 13.306 1.388 5.739 4.643 1.135 0.402

Deciduous 14.680 0.599 3.603 7.521 2.447 0.512

Mixed 9.859 0.307 4.791 4.258 0.454 0.049

Gangwon-do

Coniferous 28.594 5.891 9.595 8.289 3.715 1.105

Deciduous 36.091 3.738 7.919 9.844 9.966 4.623

Mixed 31.036 1.706 8.299 11.184 7.497 2.351

Chungcheong
buk-do

Coniferous 15.202 2.078 6.762 5.210 0.885 0.268

Deciduous 9.871 0.461 2.801 4.100 2.212 0.296

Mixed 8.967 0.435 3.845 3.509 1.022 0.156

Chungcheong
nam-do

Coniferous 13.938 1.221 6.825 5.477 0.349 0.064

Deciduous 8.290 0.877 2.868 2.876 1.581 0.088

Mixed 7.849 0.459 3.367 3.233 0.769 0.022

Jeollabuk-do

Coniferous 13.904 1.229 5.359 6.787 0.430 0.099

Deciduous 11.694 0.806 3.064 4.716 1.779 1.328

Mixed 6.532 0.352 3.007 2.819 0.205 0.150

Jeollanam-do

Coniferous 25.111 3.852 10.768 9.751 0.645 0.096

Deciduous 8.846 1.223 2.693 3.226 0.714 0.990

Mixed 10.328 0.675 5.052 4.344 0.205 0.052

Gyeongsang
buk-do

Coniferous 34.285 6.300 15.887 8.733 2.725 0.640

Deciduous 18.218 1.236 5.710 7.308 3.553 0.412

Mixed 35.353 2.904 20.103 10.500 1.763 0.082

Gyeongsang
nam-do

Coniferous 22.076 1.717 12.253 7.378 0.494 0.235

Deciduous 11.135 0.956 2.634 4.238 2.324 0.984

Mixed 17.406 0.652 8.740 6.566 0.798 0.650

Jejudo

Coniferous 1.973 0.082 0.539 0.696 0.277 0.379

Deciduous 2.804 0.105 0.318 0.425 0.845 1.110

Mixed 0.815 0.089 0.154 0.236 0.143 0.193

Total 436.444 42.376 170.893 156.192 49.471 17.512

aAge class means that the forest ages are younger than 20 years old for class II,  30 years old for class III, 40 years old for class IV, 50
years for class V and over 50 years old for class VI. A factor of 0.5 was used to convert carbon content from biomass.
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ple's Republic of Korea and Mongolia. This study used

the data set from the FRA2005 and summarized the

national total biomass carbon storage of East Asian countries

to compare the size of carbon storage with Korea (Table

6). With a total forest area of 244.796 M ha for these

countries, the total carbon storage was 9230.724 Tg C,

and the mean carbon density was 54.193 Mg C ha−1.

With a relatively small forest area, the carbon storage in

Korean forest biomass was 436.724 Tg C, comprising

approximately 1/20 of the total carbon storage of East

Asian countries. Although the mean carbon density of

Korea did not surpass Japan, Korea had the largest

carbon sequestration rate of 1.5 Mg C ha−1 yr−1 in the late

1990s due to its reforestation and forest management

practices (Choi et al., 2002). The largest carbon storage

in Chinese forest biomass was also due to extensive

reforestation efforts (Fang et al., 2001). Followed by

China, the large carbon storage in Japan was a result of

plantation regrowth, which accounted for approximately

80% of the observed carbon sinks by forest with a

typical oceanic climate for plant growth (Fang et al.,

2005). Although Mongolia has slightly greater forest biomass

carbon storage than Korea, almost half of its land com-

prises the Gobi desert, which has lesser < 10% forest

cover. The Democratic People's Republic of Korea has

higher forest cover than China and Mongolia but the

lowest forest biomass C storage.

To estimate the forest sector carbon budget, the fol-

lowing four carbon pools are necessary: (1) down dead

wood, (2) forest floor, (3) soil organic C, and (4) forest

products (Woodbury et al., 2007). With the exception of

forest products, there is no information on the other three

carbon pools at the national level in Korea. However, the

ratios of carbon pools examined in the United States

could be used to approximate the carbon budget in the

Korean forest sector due to the similar climatic conditions

compared to the eastern United States. The ratios of

carbon storage in the United States for living vegetation

(trees and understory), down dead wood, forest floor,

soil organic carbon and forest products (wood products

and landfilled wood) were 0.36, 0.03, 0.08, 0.48 and

0.05, respectively (Woodbury et al., 2007). If this ratio is

used to estimate the carbon storage in different pools,

then the nonliving carbon storage may be 776.398 Tg C,

and the total carbon storage for the whole forest sector

in Korea could be 1213.122 Tg C, of which 436.724 Tg

C is stored in forest biomass. This is substantial carbon

storage considering the land area of Korea.
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