• Title/Summary/Keyword: Carbon concentration

Search Result 3,811, Processing Time 0.027 seconds

Role of Metal Catalyst and Substrate Site for the Growth of Carbon Nanomaterials

  • Manocha, L.M.;Valand, Jignesh;Manocha, S.
    • Carbon letters
    • /
    • v.6 no.2
    • /
    • pp.79-85
    • /
    • 2005
  • The work reported in this paper relates to preparation and characterization of carbon nanomaterials by CVD method on different substrates by decomposition of certain hydrocarbons at 550-$800^{\circ}C$ using a horizontal quartz tube reactor. Monometallic and bimetallic catalyst system of iron and nickel were used for the preparation of different carbon nanomaterials. The influence of various parameters such as substrate/catalyst preparation parameters, the nature of substrate, catalyst concentration, reaction time and temperature on the growth, yield and alignment of carbon nanotubes has been studied. The characterization of carbon nanomaterials has been carried out using SEM, TEM and TGA. The carbon nanomaterials developed were vertically aligned on a large area of flat quartz substrate.

  • PDF

Production of Hydrogen and Carbon Nanotubes from Catalytic Decomposition of Methane over Ni:Cu/Alumina Modified Supported Catalysts

  • Hussain, Tajammul;Mazhar, Mohammed;Iqbal, Sarwat;Gul, Sheraz;Hussain, Muzammil;Larachi, Faical
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1119-1126
    • /
    • 2007
  • Hydrogen gas and carbon nanotubes along with nanocarbon were produced from commercial natural gas using fixed bed catalyst reactor system. The maximum amount of carbon (491 g/g of catalyst) formation was achieved on 25% Ni, 3% Cu supported catalyst without formation of CO/CO2. Pure carbon nanotubes with length of 308 nm having balloon and horn type shapes were also formed at 673 K. Three sets of catalysts were prepared by varying the concentration of Ni in the first set, Cu concentration in the second set and doping with K in the third set to investigate the effect on stabilization of the catalyst and production of carbon nanotubes and hydrogen by copper and potassium doping. Particle size analysis revealed that most of the catalyst particles are in the range of 20-35 nm. All the catalysts were characterized using powder XRD, SEM/EDX, TPR, CHN, BET and CO-chemisorption. These studies indicate that surface geometry is modified electronically with the formation of different Ni, Cu and K phases, consequently, increasing the surface reactivity of the catalyst and in turn the Carbon nanotubes/H2 production. The addition of Cu and K enhances the catalyst dispersion with the increase in Ni loadings and maximum dispersion is achieved on 25% Ni: 3% Cu/Al catalyst. Clearly, the effect of particle size coupled with specific surface geometry on the production of hydrogen gas and carbon nanotubes prevails. Addition of K increases the catalyst stability with decrease in carbon formation, due to its interaction with Cu and Ni, masking Ni and Ni:Cu active sites.

Preparation of Carbon-$TiO_2$ Composites by Using Different Carbon Sources with Titanium n-Butoxide and Their Photocatalytic Activity (여러 가지 탄소 전구체와 TNB를 이용하여 탄소-$TiO_2$ 복합체를 제조 및 그들의 광촉매 특성)

  • Chen, Ming-Liang;Zhang, Feng-Jun;Zhang, Kan;Meng, Ze-Da;Oh, Won-Chun
    • Elastomers and Composites
    • /
    • v.45 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • We used activated carbon (AC), activated carbon fiber (ACF) and multi-walled carbon nanotube (MWCNT) as carbon sources and titanium n-butoxide as titanium source to prepare carbon-$TiO_2$ composites. For characterization their properties, scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET surface area, X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX) were used. And the photoactivity of the carbon-$TiO_2$ composites, under UV irradiation, was tested using the fixed concentration of methylene blue (MB, $C_{16}H_{18}N_3S{\cdot}Cl{\cdot}3H_2O$) in aqueous solution. After UV irradiation for a certain time, the concentration of MB solution was determined by UV-vis absorption spectroscopy.

Adsorption Characteristics of $CH_4/CO_2$ Mixed Gases on Activated Carbon Fibers (활성탄소섬유상에서 CH4/CO2 혼합가스의 흡착 특성)

  • Moon, Seung-Hyun;Shim, Jae-Woon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.655-662
    • /
    • 2004
  • An adsorption process to recover the pure $CH_4\;and\;CO_2$ from its mixture was examined. In this study, activated carbon fibers were used as a selective adsorbent. The activated carbon fibers has 78~94% micropore volume and 10.5~20.3${\AA}$ narrow pore size, and showed high adsorption rate and the good selectivity for $CO_2$ under the ambient pressure. The ACF with high surface area showed short mass transfer zone and long breakthrough time and, its adsorption capacity depended on the microporosity. Compared with single component adsorption, the amount adsorbed $CO_2$ on ACF increased by the roll-up of $CH_4$ in mixed gases. The adsorption selectivity increased as now rate and $CO_2$ concentration of mixed gases increased, showing 5.2 selectivity for 75% $CO_2$ concentration.

A study on measurement of particulate matter, nitrogen oxide and carbon oxide from main engine in training ship

  • Choi, Jung-Sik;Choi, Jae-Hyuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.792-798
    • /
    • 2013
  • In this study, we have carried out measurement for exhaust emissions such as particulate matter (PM), nitrogen oxide and carbon oxide from main engines installed on the training ships, HANBADA and HANNARA, of Korea Maritime University. In particular, we considered the two conditions; at arrivals/departures and at constant speed of about 160 rpm. The result showed that the concentration of PM at the ship arrival was 2.41mg/m3. On the other hand, when the ship is on the navigation condition, the concentration of PM was 1.34 mg/m3. The concentrations of nitrogen oxide and carbon oxide were measured in the range of 1,120~1,600 ppm and 320~1,450 ppm at the arrival and departure at the port. Under constant speed condition, the concentrations of nitrogen oxide and carbon oxide were 913~1,470 ppm and 73~460 ppm, respectively. Generally, the concentrations of exhaust emissions under the arrivals and departures were higher than that of constant speed condition. These results imply that the ship operation skill to prevent a sudden load change of main engine is needed during the arrival or departure. In addition, it means that the difference of exhaust emissions according to navigation conditions has to be considered when the reduction technologies of air pollutants from ships are developed.

A Study on the Carburization of iron (철의 침탄기구에 대한 연구)

  • 권호영;조통래;권혁무
    • Journal of the Korean Professional Engineers Association
    • /
    • v.20 no.4
    • /
    • pp.5-11
    • /
    • 1987
  • The experiment was carried out for the purpose of studying the carburization of pure iron ingot and sintered iron powder by solid carbon in the atmosphere of $N_2$ gas. The velocity of carburization was estimated by the diffusion coefficient D calculated by carburization equation. The results obtained were as follows ; 1. The briqueted sample of iron fine powder which made by higher pressure, carburization depth and carbon concentration were increased as much, and pure iron shelved the maximum value. 2, The higher the carburization temperature, carburization depth and carbon concentration were increased, and the melting zone which had 3.0~3.3%C at the interface of carburization was formed at 130$0^{\circ}C$. As the pure iron ingot was carburized, the diffusion coefficient D of carbon were 0.211$\times$$10^{-6}$$\textrm{cm}^2$ㆍsec$^{-1}$ at 120$0^{\circ}C$ and 0.391$\times$$10^{-6}$$\textrm{cm}^2$ㆍsec$^{-1}$ at 130$0^{\circ}C$, respectively. 4. As the sintered iron powder was carburized at the pressure of 4 ton/$\textrm{cm}^2$, the diffusion coefficient of carbon were 0.157$\times$$10^{-6}$$\textrm{cm}^2$ㆍsec$^{-1}$ at 120$0^{\circ}C$ and 0.103$\times$$10^{-5}$$\textrm{cm}^2$ㆍsec$^{-1}$ at 130$0^{\circ}C$, respectively.

  • PDF

Study on effect of chemical impregnation on the surface and porous characteristics of activated carbon fabric prepared from viscose rayon

  • Bhati, Surendra;Mahur, J.S.;Dixit, Savita;Chobey, O.N.
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.45-49
    • /
    • 2014
  • In this study, synthetic viscose rayon fabric has been used for preparing activated carbon fabric (ACF), impregnated with different concentrations of $H_3PO_4$. The effect of $H_3PO_4$ impregnation on the weight yield, surface area, pore volume, chemical composition and morphology of ACF were studied. Experimental results revealed that both Brunauer-Emmett-Teller surface area and micropore volume increased with increasing $H_3PO_4$ concentration; however, the weight yield and microporosity (%) decreased. It was observed that samples impregnated at $70^{\circ}C$ (AC-70) give higher yield and higher microporosity as compared to $30^{\circ}C$ (AC-30). The average pore size of the ACF also gradually increases from 18.2 to 19 and 16.7 to $20.4{\AA}$ for $30^{\circ}C$ and $70^{\circ}C$, respectively. The pore size distribution of ACF was also studied. It is also concluded that the final ACF strength is dependent on the concentration of impregnant.

Preparations of Carbon Fibers from Precursor Pitches Synthesized with Coal Tar or Petroleum Residue Oil

  • Yang, Kap-Seung;Park, Young-Ok;Kim, Yong-Min;Park, Sang-Hee;Yang, Cheol-Min;Kim, Yong-Joong;Soh, Soon-Young
    • Fibers and Polymers
    • /
    • v.1 no.2
    • /
    • pp.97-102
    • /
    • 2000
  • Pitch precursors were synthesized from coal tar(CT) and pyrolysis fuel oil(PFO, petroleum residue oil) at relatively low temperature of $250^{\circ}$, in the presence of horontrifluorideidiethyletherate complex(BFDE) as a catalyst and nitrobenzene(NB) as a co-catalyst. The softening point, nitrogen content and carbon yield increased with an increase of concentration of NB. The pitch precursors with good spinnability were prepared by removing the volatile components through $N_2$ blowing. The precursor pitches were spun through a circular nozzle, stabilized at $310^{\circ}$ and finally carbonized at $1000^{\circ}$. The optically anisotropic structure formed at the absence of NB was changed into isotropic structure, showing a decrease in size of the flow domain. The hollow carbon fiber could be prepared in the process of stabilization. The results proposed that the morphology of carbon materials could be controlled by changing the concentration of catalyst and/or co-catalyst and/or stabilization condition that affect on the mobility of molecules during carbonization.

  • PDF

Removal of Aluminum from Water Samples by Sorption onto Powdered Activated Carbon Prepared from Olive Stones

  • Ghazy, S.E.;El-Morsy, S.M.
    • Carbon letters
    • /
    • v.8 no.3
    • /
    • pp.191-198
    • /
    • 2007
  • Recent studies have revealed the poisonous nature of aluminum(III) species to aquatic and terrestrial organisms. Therefore, this investigation aims to develop batch adsorption experiments in the laboratory, aiming to the removal of aluminum(III) from aqueous solutions onto powdered activated carbon (PAC). The latter (which is an effective and inexpensive sorbent) was prepared from olive stones generated as plant wastes and modified with an aqueous modifying oxidizing agent, viz. $HNO_3$. The main parameters (i.e. initial solution pH, sorbent and $Al^{3+}$ ions concentrations, stirring times and temperature) influencing the sorption process were examined. The results obtained revealed that the sorption of $Al^{3+}$ ions onto PAC is endothermic in nature and follows first-order kinetics. The adsorption data were well described by the Langmuir, Freundlich and Dubinin-Radushkevich (D-R) adsorption models over the concentration range studied. Under the optimum experimental conditions employed, the removal of ca. 100% $Al^{3+}$ ions in the concentration range $1.35-2.75\;mg{\cdot}l^{-1}$ was attained. Moreover, the procedure was successfully applied to the recovery of aluminum spiked to some environmental water samples with an RSD (%), does not exceed 1.22%.